nov
11
Una dieta con alto contenido en azúcar, que induce a la obesidad, contribuye potencialmente al aumento del riesgo de trastornos neurodegenerativos, pues desencadena resistencia a la insulina en el cerebro y afecta a la limpieza de los residuos neuronales, según pruebas con moscas de la fruta.
Un equipo del Centro de Investigación del Cáncer Fred Hutchinson (Estados Unidos) publica en PLOS un estudio en el que apuntan esta relación entre la obesidad y trastornos neurodegenerativos como la enfermedad de Alzheimer y de Parkinson. La investigación repercutirá en las terapias diseñadas para reducir el riesgo de desarrollar enfermedades neurodegenerativas, indica la revista.
Aunque se sabe que la obesidad es un factor de riesgo de trastornos neurodegenerativos, aún es un misterio cómo exactamente una conduce a la otra, por lo que el estudio se centró en esta cuestión aprovechando la similitud entre los seres humanos y las moscas de la fruta. La investigación muestra que una dieta rica en azúcar -un rasgo distintivo de la obesidad- provoca resistencia a la insulina en el cerebro, lo que a su vez reduce la capacidad de eliminar los restos neuronales, aumentando así el riesgo de neurodegeneración.
El equipo se centró en el cerebro de la mosca, en concreto en las células gliales porque se sabe que la disfunción microglial conduce a la degeneración neuronal. Los niveles de la proteína PI3k indican la capacidad de una célula para responder a la insulina y el estudio reveló que la dieta alta en azúcares provocaba una reducción de esta en las células gliales, lo que indica resistencia a la insulina. Además, examinaron el equivalente en la mosca de la microglía, llamada glía envolvente, cuya función principal es eliminar los restos neuronales, la cual tenía niveles bajos de la proteína Draper, lo que indicaba un deterioro de su función.
Otras pruebas revelaron que la reducción artificial de los niveles de PI3k provocaba tanto resistencia a la insulina como bajos niveles de Draper en la glía envolvente. Por último, demostraron que después de dañar las neuronas olfativas, la glía envolvente no podía eliminar los axones degenerados en las moscas con la dieta alta en azúcar porque sus niveles de Draper no aumentaban.
El estudio permite comprender cómo ‘las dietas inductoras de obesidad contribuyen potencialmente al aumento del riesgo de trastornos neurodegenerativos’, señalan los autores.
Referencia
Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLOS Biology[Internet].2023[citado 10 nov 2023]; 21(11): e3002359. https://doi.org/10.1371/journal.pbio.3002359.
11 noviembre 2023|Fuente: EFE. |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A.
oct
9
Una investigación hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal.
Un nuevo estudio de la Universidad de Barcelona podría impulsar el diseño de futuras estrategias para regenerar zonas cerebrales dañadas en enfermedades neurodegenerativas. El trabajo hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal. Además, los resultados perfilan un nuevo escenario para usar estas vesículas extracelulares derivadas de neuronas sanas —capaces de transportar moléculas entre células— en tratamientos contra enfermedades neurodegenerativas.
El estudio, publicado en la revista Journal of Extracellular Vesicles, tiene como primera autora a la estudiante predoctoral Julia Solana-Balaguer, y está dirigido por la profesora Cristina Malagelada, de la Facultad de Medicina y Ciencias de la Salud y el Instituto de Neurociencias (UBneuro) de la Universidad de Barcelona. También participan otros destacados investigadores del UBneuro, la Facultad de Física y el Instituto de Sistemas Complejos (UBICS) de la UB, el Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS) y las áreas del Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) y de Epidemiología y Salud Pública (CIBERESP), entre otros.
La comunicación neurona a neurona
Las neuronas son capaces de formar unas vesículas que transportan moléculas —proteínas, lípidos, ARN, etc.— hacia el exterior, y regulan la comunicación entre células nerviosas. Se trata de las vesículas extracelulares, y todavía hoy existen muchas incógnitas sobre el papel que juegan en la comunicación entre las neuronas del sistema nervioso.
El nuevo estudio, realizado con cultivos neuronales in vitro de modelos animales, revela que estas vesículas son capaces de transportar proteínas —por ejemplo, PSD-95 y VGLUT-1— y otros factores determinantes en los procesos de comunicación entre neuronas.
«Aunque las vesículas extracelulares se han propuesto como reguladoras de la comunicación intercelular en el cerebro, la mayoría de estudios lo demuestran en modelos que se alejan de un estado fisiológico y en vesículas cuyo origen se desconoce. En este estudio demostramos que, en un modelo fisiológico sin patologías, las vesículas extracelulares específicas de las neuronas regulan la comunicación neurona a neurona y promueven la plasticidad sináptica», detalla Cristina Malagelada, profesora del Departamento de Biomedicina UB e investigadora del CIBERNED.
Nuevas estrategias para combatir la neurodegeneración
En el marco del estudio, el equipo ha aplicado técnicas complementarias para aislar las vesículas extracelulares que liberan las neuronas, como la ultracentrifugación secuencial o la cromatografía de exclusión por tamaño. Además, se han utilizado técnicas para caracterizarlas, como el análisis de nano seguimiento de partículas y la microscopía electrónica de transmisión. Estas vesículas también se han utilizado para realizar tratamientos en neuronas sanas y neuronas privadas de nutrientes.
«Una vez entendida la comunicación neurona-neurona en un estado no patológico, queremos dirigir esta cuestión en un contexto de neurodegeneración. Por eso, es determinante poder caracterizar las vesículas que liberan las neuronas en las enfermedades neurodegenerativas para poder entender la progresión de estas patologías. Además, queremos explorar si en un modelo patológico podemos revertir algún rasgo más neurodegenerativo con el tratamiento de vesículas extracelulares derivadas de neuronas sanas», cierra la investigadora.
Referencia
Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, Pérez-Sisqués L, Sitjà-Roqueta L, Kucukerden M, et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles[Internet].2023[citado 7 oct 2023]; 12(9) e12355. https://doi.org/10.1002/jev2.12355
9 octubre 2023 |Fuente: dicyt| Tomado de Noticias Ciencias Sociales
oct
7
Un avance significativo arroja luz sobre los mecanismos subyacentes de la enfermedad de Parkinson y ofrece potencial para tratamientos innovadores en el futuro.
Resumen
Daño del ADN mitocondrial desencadena propagación de patología similar a la enfermedad de Parkinson
En el campo de las enfermedades neurodegenerativas, especialmente la enfermedad de Parkinson esporádica (sPD) con demencia (sPDD), la cuestión de cómo comienza y se propaga la enfermedad en el cerebro sigue siendo central. Si bien se ha señalado a las proteínas similares a priones como culpables, estudios recientes sugieren la participación de factores adicionales. Descubrimos que el estrés oxidativo, la unión del ADN dañada, la detección del ADN citosólico y las vías de activación del receptor tipo peaje (TLR) están fuertemente asociados con el transcriptoma sPDD, que tiene una señalización desregulada del interferón tipo I (IFN). En pacientes con enfermedad de Parkinson esporádica (sPD), confirmamos deleciones de ADN mitocondrial (mt) en la circunvolución frontal medial, lo que sugiere un papel potencial del ADNmt dañado en la fisiopatología de la enfermedad.
Estos hallazgos podrían arrojar luz sobre nuevas vías moleculares a través de las cuales el ADNmt dañado inicia y propaga enfermedades similares a la EP, abriendo potencialmente nuevas vías para intervenciones terapéuticas o seguimiento de enfermedades.
Hasta hace poco, nuestra comprensión de la enfermedad de Parkinson ha sido bastante limitada, lo que se ha hecho evidente en las limitadas opciones de tratamiento y manejo de esta afección debilitante.
Nuestro conocimiento reciente ha girado principalmente en torno a los factores genéticos responsables de los casos familiares, mientras que los factores causales en la gran mayoría de los pacientes seguían siendo desconocidos.
Sin embargo, en un nuevo estudio, investigadores de la Universidad de Copenhague han revelado nuevos conocimientos sobre el funcionamiento del cerebro en pacientes con Parkinson. Al frente de este descubrimiento innovador está el profesor Shohreh Issazadeh-Navikas.
“Por primera vez, podemos demostrar que las mitocondrias, los productores de energía vital dentro de las células cerebrales, particularmente las neuronas, sufren daños, lo que provoca alteraciones en el ADN mitocondrial [LP1]. Esto inicia y propaga la enfermedad como un reguero de pólvora a través del cerebro”, dice Shohreh Issazadeh-Navikas y añade:
«Nuestros hallazgos establecen que la propagación del material genético dañado, el ADN mitocondrial, provoca síntomas que recuerdan a la enfermedad de Parkinson y su progresión a la demencia».
La enfermedad de Parkinson es una afección crónica que afecta el sistema nervioso central y provoca síntomas como dificultad para caminar, temblores, desafíos cognitivos y, eventualmente, demencia. La enfermedad afecta a más de 10 millones de personas en todo el mundo. Si bien actualmente no existe cura, ciertos tratamientos médicos pueden ofrecer alivio a sus síntomas.
Pequeños fragmentos de ADN mitocondrial propagan la enfermedad
Al examinar los cerebros de humanos y ratones, los investigadores descubrieron que el daño a las mitocondrias en las células cerebrales ocurre y se propaga cuando estas células tienen defectos en los genes de respuesta antiviral. Intentaron comprender por qué se produjo este daño y cómo contribuyó a la enfermedad.
Su búsqueda condujo a una revelación notable
“Pequeños fragmentos (en realidad ADN) de las mitocondrias se liberan en la célula. Cuando estos fragmentos de ADN dañado se extravían, se vuelven tóxicos para la célula, lo que hace que las células nerviosas expulsen este ADN mitocondrial tóxico”, explica Shohreh Issazadeh-Navikas.
“Dada la naturaleza interconectada de las células cerebrales, estos fragmentos tóxicos de ADN se propagan a células vecinas y distantes, de forma similar a un incendio forestal incontrolado provocado por una hoguera casual”, añade.
El sueño es una muestra de sangre
Shohreh Issazadeh-Navikas prevé que este estudio marca el paso inicial hacia una mejor comprensión de la enfermedad y el desarrollo de futuros tratamientos, diagnósticos y mediciones de la eficacia del tratamiento para la enfermedad de Parkinson.
También expresó su esperanza de que «la detección del ADN mitocondrial dañado pueda servir como un biomarcador temprano para el desarrollo de enfermedades».
Los biomarcadores son indicadores objetivos de condiciones médicas específicas observadas en los pacientes. Si bien algunos biomarcadores son comunes, como la presión arterial, la temperatura corporal y el índice de masa corporal, otros proporcionan información sobre enfermedades particulares, como mutaciones genéticas en el cáncer o el nivel de azúcar en sangre en la diabetes. La identificación de un biomarcador de la enfermedad de Parkinson es muy prometedora para mejorar tratamientos futuros.
“Es posible que el daño del ADN mitocondrial en las células cerebrales se filtre del cerebro a la sangre. Eso permitiría tomar una pequeña muestra de sangre de un paciente como forma de diagnosticar tempranamente o establecer la respuesta favorable a futuros tratamientos”.
El profesor Issazadeh-Navikas también prevé la posibilidad de detectar ADN mitocondrial dañado en el torrente sanguíneo, lo que haría factible diagnosticar la enfermedad o evaluar las respuestas al tratamiento mediante un simple análisis de sangre.
El próximo esfuerzo de los investigadores implica investigar cómo el daño del ADN mitocondrial puede servir como marcadores predictivos para diferentes etapas y progresión de la enfermedad. «Además, nos dedicamos a explorar posibles estrategias terapéuticas destinadas a restaurar la función mitocondrial normal para rectificar las disfunciones mitocondriales implicadas en la enfermedad».
Referencia
Tresse E, Marturia Navarro J, Guinevere Sew WQ, Cisquella Serra M, Jaberi E, Riera Ponsati Ll, et al. Mitochondrial DNA damage triggers spread of Parkinson’s disease-like pathology. Molecular Psychiatry[Internet]. 2023[citado 6 oct 2023]. https://doi.org/10.1038/s41380-023-02251-4
7 0ctubre 2023 | Fuente: Intramed| Tomado de Noticias Médicas
sep
13
Los investigadores desarrollaron unas trampas especiales que les permitieron resolver el puzle
US/DICYT Nuestras proteínas son las principales responsables de regular el funcionamiento de nuestras células. En determinadas situaciones, estas proteínas experimentan modificaciones para poder enfrentarse a determinadas situaciones de manera rápida, eficaz y reversible. Una de estas modificaciones es la sumoilación, que consiste en acoplar SUMO, un pequeño fragmento proteico a las proteínas diana.
La simuilación es muy importante para proteger y regular el funcionamiento de la maquinaria proteica en situaciones de estrés, por ejemplo, cuando se produce un infarto cerebral, para permitir la rápida proliferación celular o para ayudar en los procesos de la reparación del daño en el ADN, entre otros. De hecho, muchos tumores dependen enormemente de la sumoilación para mantener su inmortalidad y multiplicarse indefinidamente y por ello, distintos fármacos que inhiben la maquinaria de sumoilación están siendo evaluados para tratamientos de tumores muy agresivos como el cáncer de páncreas y distintos tipos de linfomas.
Hasta ahora conocíamos qué proteínas eran susceptibles de experimentar la sumoilación en un momento dado y muchas de las distintas enzimas que eran capaces de realizar esta modificación. Sin embargo, no sabíamos, cuáles eran las proteínas que cada una de estas enzimas podían sumoilar, o por cuáles enzimas podían ser sumoiladas cada proteína.
Se ha publicado en la revista Science Advances un trabajo del grupo de investigación en Señalización y proteómica por ubiquitina y similares de la Universidad de Sevilla en CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), dirigido por Román González Prieto. Además, ha dirigido y coordinado el trabajo con otros grupo de investigación de las Universidades de Leiden y Amsterdam en Países Bajos, el instituto Max Plank de Alemania y el ETH de Zurich en Suiza.
En este trabajo, los investigadores desarrollaron unas trampas especiales que les permitieron resolver el puzle de qué proteínas son sumoiladas por qué enzimas. Los datos obtenidos nos permiten hacer por primera vez nuevas conexiones entre la desregulación de estas enzimas y el desarrollo de enfermedades neurodegenerativas como el párkinson, la resistencia de ciertos tumores a tratamientos de quimioterapia o el control de la expresión de los genes durante el desarrollo embrionario, entre otros.
Referencia
Daniel Salas-Lloret D,Jansen NS, Nagamalleswari E, van der Meulen C, Ekaterina Gracheva E, H de Ru A. SUMO-activated target traps (SATTs) enable the identification of a comprehensive E3-specific SUMO proteome. Sci Adv. 2023 Aug 2;9(31):eadh2073. PMID: 37531430 PMCID: PMC10396300 DOI: 10.1126/sciadv.adh2073
Fuente:(dicyt.com) Tomado-Salud © 2023 Fundación 3CIN
sep
12
Un grupo de investigadores de Costa Rica, Colombia, México y España sintetizó la evidencia existente acerca de los papeles del ejercicio y la microbiota intestinal en la neurodegeneración y encontró lo siguiente:[1]
- La microbiota intestinal afecta los cambios metabólicos en enfermedades neurológicas, mientras que el ejercicio beneficia la salud cerebral y la función cognitiva, posiblemente retrasando trastornos neurológicos graves.
¿Por qué es importante este estudio?
A pesar de la asignación de recursos significativos para estudiar la influencia de la relación entre el ejercicio y la microbiota intestinal en enfermedades neurológicas, aún persiste incertidumbre en cuanto a la conexión específica entre la microbiota intestinal y el ejercicio en el contexto de la salud cerebral. El propósito de este estudio fue aclarar esta interacción y promover un enfoque integral en la atención médica.
Metodología
Se realizó una revisión narrativa que abarcó el periodo de 2013 a 2023.
Resultados principales
- El ejercicio físico reduce la inflamación y mejora la respuesta inmune. Al hacer ejercicio se producen exerquinas, que mejoran la salud cardiovascular, el metabolismo, la respuesta inmunológica y el bienestar neurológico. Además, se aumenta la producción de interleucinas antiinflamatorias (p. ej, interleucina-10) y se reduce la producción de interleucinas proinflamatorias (p. ej., interleucina-6), disminuyendo así la inflamación en el cuerpo y mejorando la respuesta inmunológica.
- El ejercicio físico modula la microbiota intestinal a través del lactato, influyendo en la diversidad y composición bacteriana. La actividad física regular aumenta firmicutes y actinobacteria, junto con bacterias productoras de butirato y enzimas antioxidantes, mientras reduce las bacterias proinflamatorias promoviendo la salud intestinal. Estos beneficios se extienden a personas con enfermedades crónicas, disminuyendo la inflamación sistémica y los síntomas de la enfermedad.
El ejercicio puede aumentar la expresión de transportadores de lactato en el músculo y el intestino mejorando la absorción de productos metabólicos beneficiosos, como los ácidos grasos de cadena corta producidos por las bacterias intestinales.
El ejercicio físico como neuromodulador: el entrenamiento de resistencia aumenta las endorfinas y endocannabinoides, reduciendo ansiedad, trastornos del sueño y depresión, mientras que eleva los niveles de serotonina y dopamina, mejorando la cognición y retrasando respuestas neurodegenerativas. El ejercicio cardiovascular mejora las habilidades cognitivas y neurológicas en adultos sanos y con limitaciones cognitivas.
- El papel de la microbiota en el deterioro cognitivo: se ha encontrado una correlación entre la desregulación de la microbiota intestinal y diversos trastornos neurodegenerativos, como enfermedad de Parkinson, enfermedad de Alzheimer y esclerosis múltiple.
- El ejercicio físico tiene lugar en los síntomas motores, el equilibrio y la calidad de vida en pacientes con enfermedad de Parkinson. A la par, en Alzheimer resulta benéfico en deterioro neurocognitivo leve y el ejercicio cardiovascular puede r
- educir prevalencia, morbilidad y mortalidad y disminuir la velocidad de deterioro cognitivo. A largo plazo los programas de ejercicio pueden prevenir los factores de riesgo de la enfermedad de Alzheimer, mejorar el flujo sanguíneo, aumentar el volumen del hipocampo y mejorar la neurogénesis. En la esclerosis múltiple se han utilizado diversas modalidades de ejercicio (p. ej., cardiovascular, de fuerza y de intervalos) y se ha demostrado que pueden ayudar a mitigar el deterioro en la movilidad al caminar y reducir la progresión de la enfermedad. Además el ejercicio físico puede prevenir el deterioro cognitivo, que predice la discapacidad física posterior en esclerosis múltiple. El papel del ejercicio en el tratamiento de la esclerosis lateral amiotrófica es controversial, pero cuando se implementa tempranamente en la enfermedad puede ayudar a mejorar la función motora y aumentar la independencia.
- Limitaciones
El estudio presenta ciertas limitaciones en términos de exhaustividad y la selección de artículos al no seguir la metodología de una revisión sistemática.
Conclusiones
Se destaca la importancia de incluir estrategias multimodales que incluyan ejercicio, dieta, higiene del sueño y terapia psicológica como parte integral de las estrategias de tratamiento y gestión de enfermedades degenerativas.
Asimismo, los hallazgos resaltan la necesidad de investigaciones futuras en este campo. Además, los profesionales de la salud pueden considerar prescribir programas de ejercicio personalizados para sus pacientes, teniendo en cuenta sus necesidades y capacidades individuales.
Los autores han declarado no tener ningún conflicto de interés económico pertinente.
Referencia
Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez Guardado I. Examining the Interaction between Exercise, Gut Microbiota, and Neurodegeneration: Future Research Directions. Biomedicines. 2023;11(8):2267. Dio: 10.3390/biomedicines11082267. PMID: 37626763.
https://www.mdpi.com/2227-9059/11/8/2267
11/09/2023
Fuente:( Medscape,com) Tomado de Noticias y Perspectivas Copyright © 1994-2023 by WebMD
ago
11
Investigadores de la Escuela Politécnica Federal de Lausana (Suiza) han descubierto que una vía de señalización inmunitaria específica impulsa la inflamación y la neurodegeneración relacionadas con el envejecimiento. El trabajo, publicado en Nature, puede ayudar a comprender los mecanismos que subyacen a las deficiencias y enfermedades asociadas al envejecimiento.
El nuevo estudio demuestra que una vía de señalización molecular denominada cGAS/STING desempeña un papel fundamental en el impulso de la inflamación crónica y el deterioro funcional durante el envejecimiento. Mediante el bloqueo de la proteína STING, los investigadores lograron suprimir las respuestas inflamatorias en células y tejidos senescentes, lo que se tradujo en una mejora de la función tisular. cGAS/STING es una vía de señalización molecular que detecta la presencia de ADN en las células. En ella intervienen dos proteínas, la GMP-AMP sintasa cíclica (cGAS) y el estimulador de genes interferón (STING). Cuando se activa, cGAS/STING desencadena una respuesta inmunitaria para defenderse de las infecciones víricas y bacterianas.
La investigación descubrió que la activación de la proteína STING desencadena patrones específicos de actividad génica en la microglía, las células inmunitarias de primera línea de defensa del cerebro. Estos patrones de activación genética coincidían con los que aparecen en la microglía en distintas enfermedades neurodegenerativas, como la enfermedad de Alzheimer y el envejecimiento. Los investigadores estudiaron los efectos del bloqueo de la proteína STING en ratones envejecidos. Como era de esperar por su papel central en el impulso de la inflamación, la inhibición de STING alivió los marcadores de inflamación tanto en la periferia como en el cerebro. Además, los animales que recibieron inhibidores de STING mostraron mejoras significativas en la memoria espacial y asociativa. El bloqueo de STING también afectó a la función física, con una mejora de la fuerza y la resistencia musculares.
El estudio avanza en el conocimiento de la inflamación relacionada con el envejecimiento y ofrece posibles estrategias para frenar el deterioro cognitivo en enfermedades neurodegenerativas asociadas a la edad. La elucidación precisa de la interacción neuroinmune que rige la neurotoxicidad dependiente de la microglía también es prometedora para el estudio futuro de las enfermedades neurodegenerativas.
Referencia
Referencia: Gulen, M.F., Samson, N., Keller, A. et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023). https://doi.org/10.1038/s41586-023-06373-1