ago
31
Una investigación liderada desde el Instituto de Salud Carlos III (ISCIII) ha desarrollado un protocolo para que organoides presenten una gran diversidad de células cerebrales humanas, de forma que se optimice su capacidad de asemejarse a cerebros humanos, con el objetivo de facilitar las labores de investigación de enfermedades neurológicas y la búsqueda de posibles tratamientos.
Los organoides son ‘mini-órganos’ desarrollados en laboratorio a partir de células humanas, que imitan la actividad de órganos humanos, en este caso del cerebro. Los investigadores han conseguido detallar la ultraestructura -término que define la estructura de los organismos que solo puede ser observada con un microscopio electrónico- de los distintos tipos celulares que componen los organoides cerebrales humanos, según han publicado en Frontiers in Cellular Neuroscience.
Estos organoides incluyen zonas proliferativas formadas por precursores neurales que se diferencian y migran generando diferentes células cerebrales, como neuronas, astrocitos y oligodendrocitos. Además, presentan otros tipos celulares importantes para el correcto funcionamiento del cerebro humano, como las células microgliales.
Conocer mejor la ultraestructura de los distintos tipos de células presentes en los organoides cerebrales permitirá facilitar el desarrollo de nuevos estudios en torno a los mecanismos que pueden alterar la estructura y la función celular de estos ‘minicerebros’ de laboratorio, impulsando posibles avances en el desarrollo de organoides más precisos y útiles para la investigación neurológica.
La investigación está liderada desde las Áreas de Regeneración Neural y de Biología Computacional de la Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) del ISCIII, en colaboración con la Unidad de Microscopía Electrónica de las Unidades Centrales Científico-Técnicas del Instituto. El trabajo lo firman los investigadores del ISCIII Patricia Mateos-Martínez, Raquel Coronel, Martin Sachse, Rosa González-Sastre, Laura Maeso, María Josefa Rodríguez, María C. Terrón, Victoria López Alonso e Isabel Liste.
Las autoras esperan que la investigación ayude a seguir avanzando en el conocimiento de los procesos implicados en el neurodesarrollo y la neurodegeneración del cerebro humano, y en los posibles efectos en los diferentes tipos celulares del cerebro de nuevos fármacos destinados a tratar enfermedades neurológicas.
29 agosto 2024|Fuente: Europa Press |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia
mar
21
Según un estudio de Mayo Clinic publicado por la Nature Neuroscience, las células que actúan en la primera línea de defensa del sistema nervioso central contra las lesiones también juegan un papel en ayudar al cerebro a despertar de la anestesia. Este descubrimiento puede ayudar a allanar el camino para métodos innovadores que abordan las complicaciones post-anestesia.
Al salir de la anestesia, más de un tercio de los pacientes puede experimentar somnolencia extrema o hiperactividad, un efecto secundario llamado delirium. Investigadores de Mayo Clinic descubrieron que las células inmunes especiales en el cerebro llamadas microglías pueden proteger a las neuronas de los efectos secundarios de la anestesia para despertar el cerebro.
«Esta es la primera vez que hemos visto que las microglías mejoran e incrementan la actividad neuronal al involucrar físicamente los circuitos cerebrales», dice el neurocientífico de Mayo Clinic, el Ph.D. Long-Jun, autor principal del estudio.
Los investigadores observaron la presencia de microglías entre las neuronas y las sinapsis inhibitorias, suprimiendo la actividad neuronal bajo anestesia. Las microglías parecen tratar de proteger las neuronas para contrarrestar la sedación.
El cerebro está formado por una red de neuronas que dispara y estimula actividades en todo el cuerpo. Las neuronas están conectadas por sinapsis que reciben y transmiten señales que nos permiten movernos, pensar, sentir y comunicarnos. En este entorno, las microglías ayudan a mantener el cerebro sano, estable y en funcionamiento. Aunque las microglías fueron descubiertas hace más de 100 años, solo en los últimos 20 años se han convertido en un foco importante de investigación.
Al principio, los científicos solo tenían láminas fijas de microglías para examinar, lo que les proporcionaba solo imágenes instantáneas de estas células. Inicialmente, se pensó que cuando las neuronas no estaban activas y el cerebro estaba tranquilo, las microglías eran menos activas. Luego, la tecnología hizo posible observar y estudiar las microglías en detalle, incluso la manera en que se mueven.
«Las microglías son células cerebrales únicas porque tienen procesos muy dinámicos. Se mueven y bailan mientras escanean el cerebro. Ahora tenemos imágenes poderosas que muestran sus actividades y movimientos», dice el Dr. Wu.
Hace unos años, el Dr. Wu y su equipo han liderado investigaciones sobre cómo las microglías y las neuronas se comunican entre sí en cerebros sanos y no saludables. Por ejemplo, mostraron que las microglías pueden atenuar la hiperactividad neuronal durante convulsiones epilépticas . Los investigadores pueden observar estas células en el cerebro en tiempo real y registrar sus movimientos en modelos de ratones despiertos utilizando una tecnología de imagen avanzada que incluye una microscopia electrónica de barrido.
En 2019, investigadores descubrieron que las microglías pueden sentir cuando el cerebro y sus actividades están restringidos, por ejemplo, por la anestesia. Descubrieron que las microglías se vuelven más activas y vigilantes cuando esto ocurre.
«Ahora podemos ver que las microglías aumentan su vigilancia y patrullan la actividad neuronal del cerebro como un oficial de policía por la noche, respondiendo a actividades sospechosas cuando todo está tranquilo», dice el Dr. Wu.
Pacientes con delirium o agitación, cuando salen de la anestesia, pueden también sentirse hiperactivos o sentir una lentitud extrema. Los investigadores creen que la hiperactividad puede ser el resultado de la intervención excesiva de las microglías entre las neuronas y las sinapsis inhibitorias.
«Si podemos explorar el papel de las microglías en varios estados fisiológicos como el sueño, podríamos aplicar este conocimiento para mejorar la atención al paciente en entornos clínicos», explica el Ph.D. Koichiro Haruvaka, autor principal del estudio e investigador principal de Mayo Clinic.
Ver artículo: Haruwaka K, Ying Y, Liang Y, Umpierre AD, Min Yi M, Kremen V, et al. Microglia enhance post-anesthesia neuronal activity by shielding inhibitory synapses. Nature Neuroscience[Internet].2024[citado 20 mar 2024]; 27: 449-461. https://doi.org/10.1038/s41593-023-01537-8
20 marzo 2024| Fuente: EurekAlert| Tomado de| Comunicado de prensa
mar
9
Científicos de la Universidad de Washington descubrieron que las ondas cerebrales ayudan a eliminar los desechos del cerebro durante el sueño, un conocimiento importante para tratar enfermedades neurológicas como Alzheimer y Parkinson.
Las células nerviosas individuales se coordinan para producir ondas rítmicas que impulsan el líquido cefalorraquídeo a través del tejido cerebral denso, lavando el tejido en el proceso.
Según la investigación, publicada recientemente en la revista Nature, las neuronas actúan como bombas en miniatura y la actividad neuronal sincronizada impulsa el flujo de fluidos y la eliminación de desechos del cerebro.
Aprovechar este proceso, abriría la puerta a retrasar o incluso prevenir enfermedades neurológicas como Alzheimer y Parkinson. En estos casos el exceso de desechos metabólicos y las proteínas basura se acumulan en el cerebro y conducen a la neurodegeneración. Al estudiar los cerebros de ratones dormidos, los investigadores hallaron que las neuronas impulsan los esfuerzos de limpieza disparando señales eléctricas de forma coordinada para generar ondas rítmicas cerebrales.
Así, los estudiosos determinaron que tales ondas impulsan el movimiento del fluido. Recuerdan los expertos que una de las funciones del sueño es precisamente limpiar el cerebro, por lo cual si es posible mejorar el proceso de limpieza, tal vez sea posible dormir menos y mantenernos saludables. Los especialistas ahora buscan comprender por qué las neuronas disparan ondas con diferente ritmo durante el sueño y qué regiones del cerebro son más vulnerables a la acumulación de desechos.
08 marzo 2024 | Fuente: Prensa Latina| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A
feb
14
Los ‘dientes de leche’ como fábrica de células neuronales para el diseño de terapias personalizadas dirigidas a niños que sufren enfermedades raras relacionadas con el sistema nervioso, como pueden ser el autismo, las leucodistrofias o el síndrome de Rett.
Este es uno de los últimos descubrimientos de un grupo de científicos liderados por Salvador Martínez, del Instituto de Neurociencias de Alicante (IN), centro mixto del CSIC y de la Universidad Miguel Hernández de Elche (UMH), que ha observado las posibilidades para la generación de neuronas a partir de las células madre la cresta neural que se hallan dentro de la pulpa dental de los ‘dientes de leche’.
‘El diente de leche nos permite extraer fácilmente células que pueden convertirse en neuronas de los niños que tienen una enfermedad rara.
Es un modelo celular que sirve para conocer mejor los mecanismos de la alteración en un modelo humano, y determinar qué fármacos o tratamientos que pueden mejorar el funcionamiento de estas células, y por lo tanto mejorar la función cerebral en estas enfermedades’, ha explicado a EFE Martínez.
Una de las grandes ventajas de los dientes de leche es que estos llegan a los investigadores cuando son desechados por la naturaleza de forma natural, en el cambio de las piezas antes de la adolescencia, es decir mediante un proceso ‘nada invasivo’.
Las células se extraen de forma sencilla y son utilizables ‘in vitro’ (en cultivos celulares) evitando la penosa opción alternativa de una biopsia de tejido subcutáneo en pacientes muy jóvenes, según el científico, que lleva unos cinco años en esta investigación y quien ha incidido en que ‘los dientes de leche son una fuente para un modelo celular de neuronas fácilmente obtenible y manejable’.
De esta forma, los científicos pueden trabajar y crear neuronas humanas con la enfermedad para estudiar y operar con ellas en placas de cultivo y, de una forma relativamente fácil y barata, avanzar en una terapia celular específica para cada caso.
El objetivo es descubrir los mecanismos que subyacen a estas enfermedades genéticas que van asociadas a un gran proceso de neurodegeneración y que están asociadas a la discapacidad intelectual para, a continuación, probar nuevas soluciones. En este trabajo han participado un grupo amplio de investigadores, entre ellos el neuropediatra del hospital de San Juan de Alicante Francisco Carratalá, así como Marta Martínez y Carlos Bueno del Instituto Murciano de Investigación Biosanitaria (IMIB); y Claudia Pérez, del Instituto de Neurociencias (IN-UMH-CSIC).
Los investigadores se han planteado llevar adelante un proyecto que, con el nombre de ‘Ratoncito Pérez de las enfermedades raras’, consistiría en la creación de un banco de células de dientes de leche con enfermedades raras para facilitar la adquisición de muestras a los investigadores interesados en avanzar en las posibles terapias.
Los ‘dientes de leche’ suelen caerse entre los 5 y 11 años de edad mediante una extracción espontánea y natural, pero para que puedan ser aprovechados para la ciencia es necesario que la familia del menor ya diagnosticado de una enfermedad rara esté prevenido y actúe con rapidez.
De esta forma, deben tratar de evitar que la pieza se seque, para lo cual hay que recogerla en poco tiempo para o bien llevarla al laboratorio en pocas horas o bien conservarla en frío (en la nevera) hasta tres días en una bolsita con la propia saliva del menor.
11 de febrero 2024| Fuente: EFE| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A
feb
9
Una investigación ha relevado un mecanismo molecular relacionado con la muerte neuronal y con las alteraciones motoras en los mamíferos más evolucionados, que podría ayudar en la lucha contra las enfermedades neurodegenerativas. Así lo ha informado la Universidad de Barcelona, que ha dirigido la investigación junto al Instituto de Biología Molecular de Barcelona y al Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas. El estudio, que se ha llevado a cabo con modelos animales y cultivos celulares y se ha publicado en la revista ‘Science Signaling’, identifica por primera vez un mecanismo molecular que regula el transporte de las mitocondrias dentro de las neuronas y la muerte neuronal. En las neuronas, el proceso de transporte de mitocondrias es decisivo, ya que estos orgánulos deben estar presentes a lo largo de todos los axones y dendritas —unas extensiones de las neuronas— para aportar energía a la neurotransmisión y a las funciones neuronales, unos procesos con una gran demanda energética. Este gran consumo depende de una distribución muy específica y precisa de las mitocondrias en el interior de las neuronas, ha afirmado el codirector de la investigación y miembro del Departamento de Biología Celular, Fisiología e Inmunología de la Facultad de Biología de la UB, Eduardo Soriano. Este mecanismo molecular, presente exclusivamente en los mamíferos más evolucionados, podría ayudar a encontrar nuevas dianas terapéuticas contra enfermedades neurodegenerativas como la enfermedad de Parkinson, patologías neuromusculares o incluso algunos tipos de tumores, ha subrayado la UB.
7 de febrero 2024| Fuente: EFE| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A
oct
9
Una investigación hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal.
Un nuevo estudio de la Universidad de Barcelona podría impulsar el diseño de futuras estrategias para regenerar zonas cerebrales dañadas en enfermedades neurodegenerativas. El trabajo hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal. Además, los resultados perfilan un nuevo escenario para usar estas vesículas extracelulares derivadas de neuronas sanas —capaces de transportar moléculas entre células— en tratamientos contra enfermedades neurodegenerativas.
El estudio, publicado en la revista Journal of Extracellular Vesicles, tiene como primera autora a la estudiante predoctoral Julia Solana-Balaguer, y está dirigido por la profesora Cristina Malagelada, de la Facultad de Medicina y Ciencias de la Salud y el Instituto de Neurociencias (UBneuro) de la Universidad de Barcelona. También participan otros destacados investigadores del UBneuro, la Facultad de Física y el Instituto de Sistemas Complejos (UBICS) de la UB, el Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS) y las áreas del Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) y de Epidemiología y Salud Pública (CIBERESP), entre otros.
La comunicación neurona a neurona
Las neuronas son capaces de formar unas vesículas que transportan moléculas —proteínas, lípidos, ARN, etc.— hacia el exterior, y regulan la comunicación entre células nerviosas. Se trata de las vesículas extracelulares, y todavía hoy existen muchas incógnitas sobre el papel que juegan en la comunicación entre las neuronas del sistema nervioso.
El nuevo estudio, realizado con cultivos neuronales in vitro de modelos animales, revela que estas vesículas son capaces de transportar proteínas —por ejemplo, PSD-95 y VGLUT-1— y otros factores determinantes en los procesos de comunicación entre neuronas.
«Aunque las vesículas extracelulares se han propuesto como reguladoras de la comunicación intercelular en el cerebro, la mayoría de estudios lo demuestran en modelos que se alejan de un estado fisiológico y en vesículas cuyo origen se desconoce. En este estudio demostramos que, en un modelo fisiológico sin patologías, las vesículas extracelulares específicas de las neuronas regulan la comunicación neurona a neurona y promueven la plasticidad sináptica», detalla Cristina Malagelada, profesora del Departamento de Biomedicina UB e investigadora del CIBERNED.
Nuevas estrategias para combatir la neurodegeneración
En el marco del estudio, el equipo ha aplicado técnicas complementarias para aislar las vesículas extracelulares que liberan las neuronas, como la ultracentrifugación secuencial o la cromatografía de exclusión por tamaño. Además, se han utilizado técnicas para caracterizarlas, como el análisis de nano seguimiento de partículas y la microscopía electrónica de transmisión. Estas vesículas también se han utilizado para realizar tratamientos en neuronas sanas y neuronas privadas de nutrientes.
«Una vez entendida la comunicación neurona-neurona en un estado no patológico, queremos dirigir esta cuestión en un contexto de neurodegeneración. Por eso, es determinante poder caracterizar las vesículas que liberan las neuronas en las enfermedades neurodegenerativas para poder entender la progresión de estas patologías. Además, queremos explorar si en un modelo patológico podemos revertir algún rasgo más neurodegenerativo con el tratamiento de vesículas extracelulares derivadas de neuronas sanas», cierra la investigadora.
Referencia
Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, Pérez-Sisqués L, Sitjà-Roqueta L, Kucukerden M, et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles[Internet].2023[citado 7 oct 2023]; 12(9) e12355. https://doi.org/10.1002/jev2.12355
9 octubre 2023 |Fuente: dicyt| Tomado de Noticias Ciencias Sociales