jul
4
Un grupo de investigadores de la Universidad de Osaka (Japón) ha creado parches regenerativos para tratar la insuficiencia cardíaca a partir de células madre pluripotentes inducidas (iPSC), un esfuerzo avalado por la prestigiosa revista científica Nature.
Se trata de las primeras láminas de cardiomiocitos (célula muscular cardíaca) derivadas de células iPS alogénicas (tomadas de diferentes individuos de la misma especie) diseñadas para tratar a humanos y en cuya comercialización trabaja el profesor emérito de esta universidad del oeste de Japón, Yoshiki Sawa, que dijo a EFE que los parches podrían estar en el mercado «en unos tres años».
Medicina alternativa al trasplante
El avance es significativo de por sí para el campo de la medicina, y aún más para Japón, un país con falta de donantes que se convertiría en el primero del mundo en llevar al mercado esta tecnología regenerativa para el corazón de aprobarse su uso.
PorMedTec, compañía de la universidad nipona de Meiji y responsable junto a la estadounidense eGenesis de crear cerdos modificados para trasplantes de órganos a humanos, cifra que, en 2023, sólo un 3 % de las personas que necesitaban un trasplante (de cualquier órgano) pudo recibirlo.
Sawa lidera el grupo de científicos que podría conseguir que en un plazo de alrededor de tres años los hospitales cuenten con este innovador recurso para tratar a pacientes cuyos corazones no bombean como deberían, erigiéndose como alternativa al trasplante o al implante de dispositivos de asistencia ventricular.
Las láminas de cardiomiocitos iPS son capaces de tratar la miocardiopatía isquémica (estrechamiento de las arterias que suministran sangre al corazón, causando que las paredes de este órgano se vuelvan más delgadas y no pueda bombear bien) y han sido probadas con éxito en ocho pacientes nipones, relata Sawa, resultados que calificó de «prometedores» la revista Nature en un artículo en agosto de 2022.
Tejido muscular cardíaco de laboratorio
Dispuestos en placas de cultivo y frascos, dos parches fueron mostrados por el profesor en una visita de la prensa internacional en Japón a su laboratorio de Osaka, con motivo de la Exposición Universal que la ciudad acogerá en 2025 y donde se exhibirá un «corazón iPS».
Limitados todavía a latir en salas de ensayo, una vez el conocimiento de los científicos creadores se transfiera más allá del laboratorio, las láminas aspiran a salvar la vida de los pacientes que mueren esperando trasplantes de corazón.
La tecnología empleada, las iPSC, son un nuevo tipo de células madre pluripotentes generadas por primera vez en 2006 en ratones y representan un recurso potencialmente importante para aplicaciones en medicina regenerativa, de acuerdo con el Centro para la Investigación y la Aplicación de Células iPS de la Universidad de Kioto (CiRA).
Las iPSC, que derivan de células adultas, pueden diferenciarse en cualquier tipo de célula del cuerpo y proliferar en su cultivo indefinidamente, y fue pionero en conseguirlas el científico nipón Shinya Yamanaka, que formaba parte del grupo investigador responsable del proyecto en sus inicios.
Parches con ADN Nobel
Yamanaka fue Premio Nobel de Fisiología o Medicina en 2012 por demostrar que «las células maduras pueden reprogramarse para volverse pluripotentes».
El mismo año, evidenció junto al equipo la eficacia del método en cerdos, lo que dio lugar al inicio de un ensayo clínico encabezado por Sawa, que utilizó láminas de mioblastos (célula precursora de las fibras musculares) ante la insuficiencia cardíaca grave.
En 2017, el grupo de científicos se constituyó bajo el nombre CUORiPS como empresa, que cotiza en bolsa y fue seleccionada en 2023 para establecerse en Silicon Valley (California, Estados Unidos) como parte del centro de negocios allí del Ministerio de Economía, Comercio e Industria japonés.
En 2020 la firma llevó a cabo su segundo estudio clínico que demuestra la eficacia de las láminas de cardiomiocitos iPS contra la miocardiopatía isquémica, según Sawa, quien confía en una pronta aprobación de los parches por parte del Gobierno de Japón.
«Debemos concluir (la aprobación) para salvar a los pacientes», demanda el investigador.
Desarrollar células iPS que reproduzcan latidos requiere tres meses, pero para obtener las láminas dos semanas bastan, y Sawa estima que el tratamiento con los parches rondaría los 15 millones de yenes (86 520 euros), cinco (o 28 840 euros) por cada uno de los tres parches necesarios por paciente, aunque sería el Ejecutivo nipón el encargado de fijar su coste.
02 julio 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia
oct
13
Los investigadores realizaron 69 modificaciones genéticas para lograr evitar el rechazo hiperagudo, la reacción habitual ante un trasplante entre especies diferentes.
Obtener órganos de ‘repuesto’, desarrollados en animales y disponibles para el trasplante en humanos, es un objetivo que persiguen diferentes grupos de investigación en todo el mundo.
Aunque en 2022 se llevaron a cabo varios xenotrasplantes experimentales, como la implantación de un corazón de cerdo modificado genéticamente a un paciente de Baltimore que sufría una grave enfermedad cardiaca; este tipo de abordaje todavía está lejos de llegar a la clínica. Antes, se deben solventar desafíos biotecnológicos importantes que plantea el ‘salto’ entre especies, como el rechazo hiperagudo tras el injerto o el riesgo de zoonosis.
Una investigación liderada por científicos de la Universidad de Harvard y la compañía eGenesis allana ese camino al haber conseguido implantar riñones de cerdo editados genéticamente en macacos y lograr unas cifras de supervivencia reseñables. Uno de los ejemplares trasplantados vivió más de dos años con el injerto de riñón. Los detalles de la investigación se publican en la revista Nature.
Para minimizar el riesgo de rechazo y la posibilidad de transmisión de virus porcinos con el trasplante, los investigadores realizaron 69 modificaciones genéticas en el animal donante, un cerdo de Yucatán.
Estas modificaciones pueden agruparse en tres bloques: en primer lugar, eliminaron tres antígenos glicanos, ‘marcadores’ presentes en la superficie de las células que inducen un rechazo inmediato. Además, introdujeron cambios para que las células animales expresaran siete genes humanos con el objetivo de mejorar la tolerancia y neutralizar otros fenómenos asociados al rechazo hiperagudo. Y, por último, inactivaron todas las copias de la genética relacionada con retrovirus porcinos.
En combinación con medicación inmunosupresora, este cóctel de ingeniería genética proporcionó una supervivencia de hasta 758 días a uno de los macacos trasplantados.
CLAVES DEL XENOTRASPLANTE
Una de las principales claves para conseguir esa prolongada supervivencia fue la manipulación para añadir los genes humanizados, implicados en varias vías relacionadas con el rechazo, como la inflamación, la inmunidad innata o la coagulación, tal y como explicaron los investigadores en una rueda de prensa.
Los estudios in vitro, señalan los científicos, mostraron que las células endoteliales renales de los animales con estas ediciones genéticas eran capaces de modular la inflamación de una forma «indistinguible» de las células endoteliales humanas. «Nuestros resultados nos colocan un paso adelante para alcanzar la compatibilidad humana», subrayó Michael Curtis, responsable de eGenesis en el encuentro con la prensa.
Este diseño y desarrollo se trata de una «prueba de concepto» que «apoya el avance hacia el desarrollo clínico» del principal candidato que la compañía eGenesis está diseñando para el trasplante de riñón, denominado EGEN-2784, ha señalado la compañía en un comunicado.
Para Beatriz Domínguez-Gil, directora de la Organización Nacional de Trasplantes (ONT), este diseño «se trata de un modelo que proporciona resultados muy prometedores».
Domínguez-Gil destaca el diseño de modificaciones genéticas que ha permitido alcanzar «una supervivencia prolongada en primates no humanos».
Pero, además, hace hincapié en el hecho de que el desarrollo proporciona «un modelo experimental que nos va a permitir avanzar en el ámbito del xenotrasplante de una forma mucho más segura».
Este diseño permite dar un paso importante «a la hora de demostrar que un abordaje es seguro y eficaz antes de dar el salto a la realización de ensayos clínicos».
Desde esas dos perspectivas, «es un estudio muy novedoso y de mucha relevancia», subraya Domínguez-Gil, que también apunta que la utilización de este tipo de primates no humanos como receptores en los experimentos puede facilitar la traslación posterior de los resultados a la clínica. «Es un modelo probablemente más trasladable a la realidad del humano que los que se han utilizado previamente», destaca.
UN LARGO CAMINO POR RECORRER
De cualquier manera, la directora de la ONT recuerda que «todavía quedan muchísimos pasos en este en ese camino de llevar el xenotrasplante a la clínica».
Queda mucho trabajo por realizar en el ámbito preclínico, subraya Domínguez-Gil. En este sentido, los propios investigadores reconocen en la revista científica que las modificaciones genéticas planteadas deben afinarse para conseguir resultados clínicos.
Pero, además, también hay que abordar las cuestiones éticas que plantea este tipo de procedimientos. «Entre otras cosas, se tiene que decidir cuál es el paciente al que se le va a ofrecer esta opción frente a la alternativa; es decir, qué criterios tiene que cumplir un paciente para entrar en un ensayo clínico de estas características cuando tenemos ya un tipo de trasplante entre humanos muy consolidado, que es una realidad clínica ya habitual y que ofrece extraordinarios resultados», señala.
También hay que abordar cuestiones relacionadas con la protección de los animales, así como la planificación de cómo se va a lograr que estos tratamientos «extraordinariamente costosos» puedan llegar a los pacientes de una forma equitativa, plantea la directora de la ONT.
«Hay muchas cuestiones que avanzar y que tener en cuenta, pero yo creo que en los próximos 10 años sí vamos a ver un salto importante a la clínica de esta opción terapéutica», concluye Domínguez-Gil.
Referencia
Anand RP, Layer JV, Heja D, Hirose T, Lassiter G, Firl D, et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature[Internet]. 2023[citado 12 oct 2023]; 622, 393–401. https://doi.org/10.1038/s41586-023-06594-4
13 octubre 2023│Fuente: El Mundo│ Tomado de Salud
sep
13
Mediante un implante ultrafino se puede hacer un continuo seguimiento y llegar a detectar irregularidades de temperatura asociadas con la inflamación y otras respuestas corporales que surgen con el rechazo del trasplante.
Para personas que viven con un riñón trasplantado, monitorear la salud de su órgano supone un viaje continuo. La forma más sencilla de controlar la salud de los riñones es midiendo ciertos marcadores en la sangre. Al realizar un seguimiento de los niveles de creatinina y nitrógeno ureico en sangre del paciente, los médicos pueden obtener información sobre la función renal. Pero los niveles de creatinina y nitrógeno ureico en sangre pueden fluctuar por razones no relacionadas con el rechazo de órganos, por lo que el seguimiento de estos biomarcadores no es sensible ni específico. Ello conduce, en ocasiones, a falsos negativos o positivos.
Al respecto, investigadores de la Universidad Northwestern (EEUU) han desarrollado el primer dispositivo electrónico para monitorear continuamente la salud de los órganos trasplantados en tiempo real, cuyos resultados se han publicado en ´Science´.
Ubicado directamente sobre un riñón trasplantado, el implante suave y ultrafino puede detectar irregularidades de temperatura asociadas con la inflamación y otras respuestas corporales que surgen con el rechazo del trasplante. Seguidamente, alerta al paciente o al médico transmitiendo datos de forma inalámbrica a un teléfono inteligente o tableta cercana.
Los responsables del dispositivo lo probaron en un modelo animal pequeño con riñones trasplantados y descubrieron que el dispositivo detectaba señales de advertencia de rechazo hasta tres semanas antes que los métodos de seguimiento actuales. Este tiempo adicional podría permitir a los médicos intervenir antes, mejorar los resultados y el bienestar de los pacientes, además de aumentar las probabilidades de preservar los órganos donados, que son cada vez más valiosos debido a la creciente demanda en medio de una crisis de escasez de órganos.
«El seguimiento en tiempo real de la salud del órgano trasplantado del paciente es un paso fundamental hacia la dosificación y la medicina personalizadas», afirmó John A. Rogers, pionero de la bioelectrónica que dirigió el desarrollo del dispositivo.
Características del sensor
El nuevo dispositivo no sólo detecta signos de rechazo antes que otros métodos, sino que también ofrece un seguimiento continuo en tiempo real. Inmediatamente después de las cirugías de trasplante, es posible que los pacientes se realicen análisis de sangre más de una vez por semana. Pero, con el tiempo, los análisis de sangre se vuelven menos frecuentes.
Con sólo 0,3 centímetros de ancho, 0,7 centímetros de largo y 220 micrones de grosor, su medida equivale, aproximadamente, al ancho de un cabello. Para fijarlo al riñón, Rogers y su equipo aprovecharon la biología natural del órgano. Todo el riñón está encapsulado por una capa fibrosa, llamada cápsula renal, que protege al órgano del daño. El equipo diseñó el sensor para que encaje justo debajo de la capa de la cápsula, donde descansa cómodamente contra el riñón.
«La cápsula mantiene el dispositivo en buen contacto térmico con el riñón subyacente», indicó Rogers. «Los cuerpos se mueven, por lo que hay mucho movimiento con el que lidiar. Incluso el propio riñón se mueve. Y es tejido blando sin buenos puntos de anclaje para suturas. Fueron desafíos de ingeniería enormes, pero este dispositivo es una interfaz suave y perfecta que evita el riesgo de dañar el órgano».
El dispositivo contiene, asimismo, un termómetro altamente sensible, que puede detectar variaciones de temperatura increíblemente leves (0,004 grados Celsius) en el riñón, y sólo en el riñón. (El sensor también mide el flujo sanguíneo, aunque los investigadores encontraron que la temperatura era un mejor indicador de rechazo).
Tras el éxito del ensayo con animales pequeños, los investigadores ahora están probando el sistema en un modelo animal más grande.
Referencia
Madhvapathy SR, Jing Wang J, Wang H, Patel M , Chang A , Zheng X , et al. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science. 2023; 381,1105-1112(2023).DOI:10.1126/science.adh7726
https://www.science.org/doi/10.1126/science.adh7726
08/09/2023
Fuente: (IMMedico) Tomado- Hepatología © 2023 Copyright: Publimas Digital
feb
21
Un estudio científico confirma que no hay rastros de partículas virales en el ‘paciente de Düsseldorf’, un hombre que, tras recibir un trasplante de células madre para tratar una leucemia, interrumpió de forma supervisada el tratamiento antirretroviral contra el VIH y, cuatro años después, se mantiene sin virus en el organismo, según publica Nature Medicine. Read more
nov
11
La Sociedad Española de Nefrología (SEN), que reúne en Granada a más de 1 200 nefrólogos, investigadores y expertos con motivo de su 52 Congreso Nacional, ha advertido de un aumento de la enfermedad renal crónica (ERC) en España, que ha crecido casi un 30 % durante la última década. Read more
oct
17
El hospital público madrileño de La Paz ha realizado con éxito por primera vez en el mundo un trasplante multivisceral de intestino, procedente de una donación en asistolia controlada pediátrica, a una niña de 13 meses que fue dada de alta y se encuentra en perfecto estado de salud en su domicilio. Read more