jul
19
Investigadores andaluces han identificado nuevas variantes de un gen denominado COQ7, relacionado con la generación de enfermedades neurodegerativas llamadas mitocondriales, lo que abre una nueva vía al tratamiento de estas patologías en niños que la sufren.
Se trata de un estudio del Centro Andaluz de Biología del Desarrollo (CABD) dirigido por el catedrático de Biología Celular de la Universidad Pablo de Olavide Carlos Santos Ocaña, que ha identificado nuevas variantes genéticas del COQ7 y su relación con la deficiencia de Coenzima Q10 en pacientes pediátricos, lo que hará que se puedan mejorar el diagnóstico y tratamiento de enfermedades mitocondriales.
En un comunicado, la Universidad Pablo de Olavide (UPO) ha recordado que las mitocondriales, que afectan principalmente la producción de energía en las células, son un grupo diverso de enfermedades raras, poco frecuentes, que pueden causar una amplia gama de síntomas y afectar varios órganos del cuerpo, y se estima que existen alrededor de 300 diferentes, cada una de ellas con sus particularidades.
En el estudio, los pacientes que portan variantes (mutaciones) del gen COQ7 padecen una enfermedad mitocondrial producida por una deficiencia de COQ10, patología que se caracteriza por producir una serie de alteraciones moleculares, comunes a todos los pacientes, que son propias de una grave disfunción mitocondrial.
Sin embargo, cada uno de los pacientes muestran una diferente combinación de variantes génicas que son responsables de alteraciones fisiológicas específicas que explican los diversos fenotipos de la enfermedad y, por tanto, de la gravedad de esta.
Debido a su complejidad y la variabilidad de sus síntomas, suponen un gran desafío tanto para la comunidad médica y científica como para los enfermos y sus familias, por lo que su investigación es crucial para avanzar en su conocimiento y desarrollar mejores diagnósticos y tratamientos.
En esta línea, Ocaña lidera un estudio que abre la vía a identificar marcadores para el diagnóstico, la gravedad y pronóstico de la enfermedad, posibilitando además cierta personalización en terapias aplicables a cada paciente.
El trabajo cierra el diagnóstico, clínico y molecular, de tres pacientes pediátricos que mostraban una enfermedad mitocondrial: en los tres casos la patología se produce por la presencia de variantes patológicas del gen COQ7, que codifica una proteína que participa de la síntesis de Coenzima Q10.
Esta molécula es esencial para el correcto funcionamiento de las células y la salud en general; su papel en la producción de energía, la protección antioxidante, y el apoyo a la salud cardiovascular y muscular la hace crucial para el bienestar humano.
Además de cerrar el diagnóstico con pruebas funcionales, el equipo de investigación realizó estudios adicionales para intentar explicar la heterogeneidad de los síntomas mostrados por los pacientes, a pesar de compartir variantes del mismo gen y de mostrar de forma común una deficiencia de CoQ10.
Como explica el investigador Carlos Santos, se ha diagnosticado definitivamente a tres pacientes que mostraban una enfermedad mitocondrial con deficiencia de Coenzima Q10 originada por diferentes variantes (mutaciones) del gen COQ7, y aunque los tres presentan dicha deficiencia, «realmente sus síntomas son muy heterogéneos, al igual que la gravedad de la enfermedad», que va desde un caso muy grave con fallecimiento temprano del paciente «a un caso mucho más leve que mejoró con un tratamiento con CoQ10″.
El estudio ha permitido demostrar así que los cambios estructurales generados por cada variante identificada en los pacientes alteran la función de la proteína COQ7 de manera específica, y que la combinación de estas variantes, lo que determina el contexto genético del paciente, explica no solo la gravedad de la enfermedad, sino también el efecto tan variable que muestra la terapia disponible para el tratamiento de la deficiencia de CoQ10.
La investigación, publicada en Journal of Inherited Metabolic Disease, ha contado con la participación de los hospitales Sant Joan de Déu, Vall d’Hebron, Santiago de Compostela y La Fe de Valencia, y de varios equipos del Centro de Investigación Biomédica en Red de Enfermedades Raras (Ciberer), coordinados desde el grupo del CABD ‘Regulación de la síntesis de coenzima Q y sus implicaciones en la salud mitocondrial’.
17 julio 2024|Fuente: EFE|Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia
jul
18
Los virus de ARN, que tienen el ácido ribonucleico o ARN como material genético en lugar de ADN o ácido desoxirribonucleico, tienen unas de las tasas de mutación más altas de la naturaleza. Esto les permite burlar al sistema inmune para seguir contagiando, y hace más difícil crear fármacos para evitarlo. Ahora, un equipo del Instituto de Biología Integrativa de Sistemas (I2SysBio), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universitat de València (UV), ha realizado el primer análisis sobre cómo afectan las mutaciones al proteoma completo (grupo completo de proteínas elaboradas por un organismo) de un virus de ARN, encontrando una variabilidad significativa en la tolerancia a las mutaciones entre las diferentes proteínas virales. Esto facilitará el desarrollo de fármacos que reduzcan la probabilidad de que el virus desarrolle resistencia. Los resultados se publican en la revista Plos Biology.
La alta tasa de mutación de los virus de ARN se debe a que su replicación la controla una proteína, llamada ARN polimerasa, con tendencia a cometer errores al generar nuevas copias del genoma del virus. Estas mutaciones presentan una distribución heterogénea, sugiriendo que las distintas proteínas virales difieren en su forma de tolerar mutaciones. Para entender este fenómeno, los autores del estudio realizaron un análisis exhaustivo sobre cómo las mutaciones en las distintas proteínas codificadas por el genoma viral afectan a la viabilidad de un virus humano de ARN, el coxsackievirusB3, que provoca una inflamación grave del corazón en humanos.
Utilizando una técnica denominada ‘escaneo mutacional profundo’, con la que producen poblaciones de virus que codifican casi todas las mutaciones posibles y detectan la frecuencia de estos cambios utilizando las últimas técnicas de secuenciación genética, los autores han podido determinar el efecto de más de 40 000 mutaciones y 1 300 deleciones (pérdida de material genético) en la viabilidad del virus. «Es necesario generar poblaciones virales que alberguen una gran cantidad de diversidad y ser capaz de secuenciarlas con alta fidelidad. Pocos laboratorios pueden hacer esto», afirma Ron Geller, investigador del CSIC en el I2SysBio que lidera el estudio.
Bolsillos para alojar fármacos antivirales
Los autores encontraron una variabilidad significativa en la tolerancia a las mutaciones entre las diferentes proteínas virales. Esta variabilidad está relacionada con características estructurales y funcionales específicas de cada proteína. Además, observaron que estos efectos se mantienen en diferentes tipos de células, con excepción de algunos residuos involucrados en la entrada del virus en la célula. Esto remarca la importancia de los factores de entrada en el proceso de expansión viral, sostienen los investigadores.
«Analizamos los llamados ‘bolsillos’ [pockets, en inglés], unos huecos en las proteínas virales con propiedades favorables para ser atacadas por moléculas pequeñas de fármacos. Encontramos doce pockets de este tipo repartidos en diferentes proteínas virales», revela Geller. «A continuación, descubrimos que algunos de estos pockets son muy intolerantes a las mutaciones, por lo que es probable que cualquier mutación que conduzca a la resistencia a los fármacos también sea letal para el virus, lo que evitaría la propagación de dichos mutantes. Otros mostraron una tolerancia muy alta a las mutaciones, por lo que puede que no sean buenas dianas farmacológicas», argumenta el investigador del CSIC.
Desarrollo de fármacos
Este es el primer análisis de cómo las mutaciones afectan un proteoma completo de un virus humano de ARN hecho hasta la fecha, lo que permite hacer una comparación directa entre las distintas clases de proteínas de su tolerancia a mutaciones, destacan los investigadores. Los resultados del estudio proporcionan un conjunto de datos que ayuda a entender mejor la biología y la evolución de este tipo de virus, que pertenece a una familia de virus con una relevancia médica para humanos (poliovirus, rinovirus, enterovirus A71…).
«Uno de los principales desafíos en el desarrollo de moléculas antivirales es la aparición de mutaciones que permiten al virus escapar de estos fármacos», explica Geller. «Los datos proporcionados en este estudio sobre la tolerancia de las proteínas virales a las mutaciones podrían utilizarse para identificar regiones con baja tolerancia a las mutaciones, facilitando el desarrollo de fármacos que reduzcan la probabilidad de que el virus desarrolle resistencia».
17 julio 2024|Fuente: CSIC |Tomado de |Noticia
mar
21
El cáncer pediátrico, también llamado cáncer del desarrollo, es poco frecuente. En todo el mundo, se diagnostican unos 400.000 nuevos casos al año. La probabilidad de que una niña o un niño desarrolle dos cánceres independientes en su etapa infantil es extremadamente baja. Sin embargo, estos casos se dan y estudiar el origen de estas segundas neoplasias no solo sirve para explicar estos casos concretos, sino que también contribuye a entender mejor el origen del cáncer pediátrico en general.
En un estudio publicado hoy por el Instituto de Investigación Biomédica (IRB Barcelona) y el PCCB-Hospital Sant Joan de Déu · Institut de Recerca Sant Joan de Déu (HSJD – IRSJD) en la revista Cancer Discovery, un equipo científico ha logrado importantes avances en la comprensión delorigen del cáncer infantil.
El trabajo no sólo esclarece el origen de las patologías tan improbables de estos pacientes, sino que mejora la comprensión de los cánceres pediátricos en general. En el futuro, este conocimiento podría contribuir a determinar el tratamiento y seguimiento de los pacientes jóvenes”, reflexiona el Dr. Abel González-Pérez.
La huella mutacional de la quimioterapia
El estudio se enfocó en explorar el origen de estos segundos cánceres, utilizando técnicas avanzadas de secuenciación del genoma. Los resultados revelaron que las terapias contra el cáncer, específicamente aquellas basadas en el platino, introducen mutaciones —cambios en el ADN— en el segundo tumor y en los tejidos sanos de los niños. Esta huella mutacional específica ayuda a entender cuándo se formó el segundo cáncer.
En concreto, uno de los pacientes del estudio desarrolló una leucemia (o cáncer de la sangre) cuatro años después de haber sido sometido a quimioterapia para el tratamiento de un primer tumor (sarcoma) en una pierna. Los patrones mutacionales que se hallaron, desvelaron que la leucemia se desarrolló posteriormente a este tratamiento.
Aunque sabemos que la quimioterapia recibida años antes está relacionada con el desarrollo del segundo cáncer, no podemos determinar si este ha sido causado por la acción mutagénica de la quimio, o por otras causas. Sea como sea, estas terapias aumentan el número de mutaciones en el cuerpo de los niños más allá de lo que se acumularía naturalmente con el tiempo, lo que nos hace preguntarnos cómo podrían afectar su salud en el futuro”, explica la primera autora del trabajo, la investigadora postdoctoral del IRB Barcelona Dra. Mónica Sánchez-Guixé.
Mutaciones tempranas o eventos independientes
Otro descubrimiento clave del estudio es que, en el caso de un paciente, ambos tumores (tanto el primero como el segundo, que se manifestó 8 años después) se desarrollaron a partir de una única mutación, que el niño había adquirido en una etapa temprana de su desarrollo embrionario, mucho antes de haber recibido cualquier tratamiento contra el cáncer.
La importancia de compartir los datos clínicos para impulsar la investigación
El progreso en la investigación médica, especialmente en áreas tan complejas y críticas como el cáncer, depende en gran medida de la disponibilidad y el análisis de datos clínicos. Especialmente en el caso de enfermedades raras (el cáncer del desarrollo es una de ellas), la falta de datos es uno de los mayores obstáculos en su investigación, ya que limita la capacidad de los científicos para identificar patrones, probar hipótesis y desarrollar terapias eficaces.
La decisión de pacientes y familias de compartir esta información tan personal y sensible es un acto de generosidad que tiene el potencial de transformar la investigación y salvar vidas. “Este estudio no hubiera sido posible si los padres de los pacientes no hubieran demostrado un compromiso total con la investigación a lo largo de todo su camino. Primero autorizando el uso de las muestras de sus hijos para seguir investigando. Segundo, autorizando el estudio de las muestras de autopsia en los casos de fallecimiento, un acto de donación extraordinario y con clara vocación para seguir ayudando a los siguientes afectados. Este convencimiento es lo que ha impulsado la creación del Pediatric Cancer Center Barcelona (PCCB)”, añade el Dr. Jaume Mora, Director Científico del Pediatric Cancer Center Barcelona del Hospital Sant Joan de Déu y coordinador del programa de Cáncer Pediátrico del IRSJD.
Este estudio, no solo contribuye significativamente a nuestra comprensión del cáncer pediátrico, sino que también enfatiza la importancia de mejorar los tratamientos pensando en el futuro de los pacientes, asegurando no solo su supervivencia, sino también su calidad de vida a largo plazo” concluye la Dra. Núria López-Bigas, investigadora ICREA del IRB Barcelona.
Ver artículo: Sánchez Guixé M, Muiños F, Pinheiro Santin M, González Huici V, Rodriguez Hernandez CJ, Avgustinova A, et al. Origins of Second Malignancies in Children and Mutational Footprint of Chemotherapy in Normal Tissues. Cancer Discov[Internet]. 2024[citado 20 mar 2024]; https://doi.org/10.1158/2159-8290.CD-23-1186
20 marzo 2024| Fuente: Dicyt| Tomado de| Noticias|Salud
nov
17
Un trabajo de la Universidad de Sevilla, CABIMER y el IRB Barcelona liderado por los investigadores Andrés Aguilera (US-CABIMER) y Aleix Bayona Feliu (IRB Barcelona) abre la posibilidad de que los híbridos DNA-RNA y las mutaciones en diferentes factores celulares que los forman puedan ser responsables del origen de procesos cancerígenos. Por ello, los autores resaltan la necesidad de estudiar dichos factores para entender y evaluar posibles riesgos en cáncer.
El estudio muestra que la cromatina y los factores que la regulan evitan la formación de híbridos de DNA-RNA, una fuente de inestabilidad genómica asociada a cáncer. Estos híbridos bloquean la replicación, dando lugar a un incremento de roturas cromosómicas y colisiones entre la transcripción y la replicación.
La investigación ha demostrado que la cromatina constituye una primera barrera para la protección de la integridad del genoma. Así se ha observado en análisis de silenciamiento de diferentes factores remodeladores de la cromatina en cultivos de células tumorales.
Mediante un estudio comparado de sus datos con las bases de datos de genomas de células tumorales, han descubierto que los sitios del genoma enriquecidos en híbridos de DNA-RNA coinciden con los lugares con la más alta frecuencia de mutaciones encontrados en células de tumores. El trabajo revela así por primera vez una asociación directa entre los híbridos de DNA-RNA y mutaciones asociadas a cáncer, sugiriendo que son un elemento de riesgo en el origen de tumores.
El laboratorio de Aguilera es pionero en el estudio del papel de los híbridos de DNA-RNA en el origen de la inestabilidad genética, y este nuevo trabajo no solo permite entender mejor el control celular de los híbridos y su regulación por factores epigenéticos, sino que sugiere la posibilidad de que los niveles de híbridos DNA-RNA en las células se puedan usar como un indicador potencial de riesgo cancerígeno.
El trabajo, publicado en la revista Nature Communications, ha sido financiado con fondos de la Agencia Estatal de Investigación y la European Research Council entre otros.
Referencia
Bayona Feliu A, Herrera Moyano E, Badra Fajardo N, Galván Femenía I, Soler Oliva ME, Aguilera A. The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts. Nature[Internet].2023[citado 15 nov 2023];14(6890). https://doi.org/10.1038/s41467-023-42653-0
17 noviembre 2023 | Fuente: IMMÉDICO| Tomado de Noticias -Oncología
sep
6
Las mutaciones del gen NEK1 se han relacionado con hasta el 2% de todos los casos de ELA, lo que lo convierte en una de las causas más conocidas de la enfermedad, pero se desconocía cómo el gen mutado altera la función de la motoneurona y provoca su degeneración y muerte. Ahora, científicos de Northwestern Medicine, de la Universidad de Northwestern (EE.UU.), han descubierto por primera vez cómo este gen mutado conduce a la ELA, según publican en Science Advances.
Los investigadores descubrieron que la mutación causa dos problemas en la neurona. El primero es que hace que las estructuras que sostienen el axón en la neurona se vuelvan menos estables y susceptibles de colapsarse. El segundo problema es que la mutación altera la capacidad de la neurona para importar carga en forma de ARN o proteínas a su núcleo (importación nuclear). Sin la importación de ARN y proteínas críticas, se interrumpe el papel operativo del núcleo para la función de la célula. Al esclarecer estas dos vías, sugieren que son grandes dianas terapéuticas para la enfermedad.
Los autores consideran que este descubrimiento es importante porque un gran avance en la investigación de la ELA en los últimos años fue descubrir que la importación nuclear está alterada en otras formas de ELA genética, de modo que sus resultados relacionan esta nueva causa de ELA con otras causas genéticas en las que se interrumpe el mismo proceso. De hecho, una de las principales cuestiones sin resolver en este campo es si la ELA es una sola enfermedad o un conjunto de versiones genéticamente distintas de menor tamaño bajo el «paraguas» de los mismos problemas clínicos, y este descubrimiento, referido a los mismos mecanismos destructivos en otras formas genéticas de ELA, lleva a creer que se trata de la misma enfermedad, algo fundamental para desarrollar tratamientos y para diseñar ensayos clínicos óptimos dirigidos a poblaciones específicas de pacientes con ELA.
Referencia
Jacob R. Mann et al. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. Sci. adv. 9,eadi5548(2023). DOI:10.1126/sciadv.adi5548
https://www.science.org/doi/10.1126/sciadv.adi5548#tab-citations
28/08/2023(Neurología.com) Tomado- Noticia © Viguera Editores, S.L.U. 2023
may
13
El cáncer de páncreas es uno de los tumores más letales. La tasa de supervivencia al adenocarcinoma ductal de páncreas, la forma más frecuente de la enfermedad, se sitúa en un 8,6%, el porcentaje más bajo de todos los tumores comunes, según datos de la Sociedad Española de Oncología Médica.
A pesar de los avances en la investigación sobre este tipo de cáncer hay muchas incógnitas por responder. La mayoría de las veces se diagnostica cuando ya está en fases avanzadas. La última novedad reseñable la firma un equipo que ha conseguido revelar por qué se inicia la mecha de este tipo de cáncer. Los detalles del proceso se publican en el último número de la revista Science.
Es conocido que en los tumores de páncreas, como en otros tipos de cáncer, son claves las mutaciones en el oncogén KRAS. El equipo que ahora publica novedades sobre la enfermedad, formado por investigadores del Memorial Sloan Kettering Cancer Centre (MSKCC), de Nueva York, y la investigadora Direna Alonso-Curbelo, que ahora trabaja en el Instituto de Investigación Biomédica de Barcelona (IRB), también demostró anteriormente el papel inductor que cumplen en el desencadenamiento de la enfermedad factores externos como por ejemplo, una lesión en el tejido que provoque inflamación. Ahora, los científicos han demostrado que para el proceso también es fundamental la identidad celular, la capacidad de algunas células para responder a la influencia de los oncogenes y la inflamación.
Las interacciones entre mutaciones genéticas y factores externos, subrayan los investigadores, modifican la identidad de algunas subpoblaciones de células, las transforman. Y, como consecuencia de esto, la capacidad de estas células para comunicarse e interactuar con otras células de su entorno aumenta enormemente, lo que contribuye a favorecer el desarrollo del cáncer.
Alta plasticidad
Concretamente, los científicos han demostrado que en el páncreas existen subpoblaciones de células diversas que tienen una alta plasticidad y responden mucho más a los factores genéticos y no genéticos que predisponen al cáncer. Según sus datos, esas células tienen, por un lado, un epigenoma diferente y específico; y, por otro, una capacidad incrementada para poder responder y mandar señales a su entorno.
Impulsadas por la influencia de las mutaciones y la inflamación, esas células generan redes de comunicación aberrante, provocando un bucle de retroalimentación que conduce al desarrollo y progresión del cáncer.
En modelos de ratón, el equipo demostró que era posible bloquear la citada comunicación aberrante y que esas conversaciones entre células cumplían un papel fundamental en el desarrollo del cáncer. «Nuestros análisis demostraron que estas redes de comunicación expansivas que se establecen en las fases iniciales del cáncer de páncreas son funcionalmente relevantes y dirigen la tumorigénesis pancreática en ratones», señala Alonso-Curbelo.
Métodos computacionales
Así, la investigación combinó sofisticados modelos de ratón genéticamente modificados y métodos computacionales avanzados para mapear los distintos estados celulares que conducen al cáncer y desentrañar las características de las subpoblaciones de células individuales del páncreas en cada fase de la progresión del tumor.
El área computacional de la investigación ha estado dirigida por Cassandra Burdziak, estudiante de doctorado en el laboratorio de la doctora Pe’er, en el MSKCC; mientras que la parte experimental y conceptual ha sido liderada por la propia Alonso-Curbelo, que inició la investigación durante su estancia en la institución neoyorkina.
El hallazgo coincide en su publicación con otro artículo que aparece esta semana en Nature donde se han mostrado resultados prometedores de una vacuna experimental basada en tecnología de ARN mensajero, la misma que se utilizó en las vacunas contra la covid-19, contra el cáncer de páncreas más agresivo.
Los resultados de un ensayo clínico en fase I realizado en 16 pacientes, muestran que las vacunas, personalizadas, son capaces de inducir una respuesta inmunitaria contra el cáncer.
Los primeros resultados del estudio han demostrado que la vacuna induce respuesta inmunitaria sustancial y retrasa potencialmente la recaída de los pacientes en una forma de cáncer, ya que se elaboraron con neoantígenos identificados en sus propios tumores. El tratamiento se administró en combinación con quimioterapia e inmunoterapia.
Mayo 12/2023 (Diario Médico) – Tomado de Oncología – Identidad celular Copyright Junio 2018 Unidad Editorial Revistas, S.L.U.