alzheimer-1Investigadores de la Facultad de Medicina de la Universidad de Washington (EE.UU.) han descubierto, en estudios con ratones, que los depósitos de tau en el cerebro provocan la acumulación de ésteres de colesterol, y que la reducción de sus niveles ayuda a prevenir el daño cerebral y los cambios de comportamiento, según publican en Neuron. El compuesto utilizado en este estudio tiene efectos secundarios en humanos, pero aseguran que si se pudiera desarrollar una terapia que redujera los ésteres de colesterol dentro de las células cerebrales sin efectos secundarios, sería un candidato prometedor para probar en enfermedades neurodegenerativas

Para investigar las conexiones entre APOE, lípidos y daño cerebral, los autores estudiaron ratones con un gen tau de alto riesgo que los predispone a acumular tau en el cerebro. Estos ratones empiezan a desarrollar signos de neurodegeneración en torno a los 6 meses de edad. A los 9 meses y medio, sus cerebros están gravemente dañados y ya no son capaces de realizar tareas ordinarias. Los ratones también eran portadores de una segunda modificación genética: sus propios genes APOE habían sido eliminados y sustituidos por una variante del gen APOE humano -APOE3 o APOE4- que duplica o triplica el riesgo de Alzheimer. La investigación reveló que la APOE4 está relacionada con un metabolismo distorsionado de los lípidos en el cerebro. En ratones tau de 9 meses y medio portadores de APOE4, las mismas zonas cerebrales que se atrofiaron y dañaron también acumularon un exceso de lípidos, con un patrón extraño, alterándose los niveles de más de 180 tipos de lípidos.

Una de las diferencias más llamativas era que la microglía de esas zonas estaba repleta de ésteres de colesterol. APOE3 no tuvo el mismo efecto. La microglía llena de lípidos se vuelve hiperinflamatoria y empieza a segregar elementos nocivos en el cerebro. Por tanto, la eliminación de lípidos podría reducir la inflamación cerebral y la neurodegeneración. Para analizar esta situación, los autores utilizaron un agonista del LXR. Los investigadores administraron el fármaco GW3965 a ratones tau portadores de APOE4 a partir de los 6 meses de edad. Los ratones fueron evaluados a los 9 meses y medio, momento en el que sus cerebros normalmente habrían sufrido daños considerables. Los ratones que recibieron el fármaco conservaron un volumen cerebral significativamente mayor que los que recibieron placebo. También tenían niveles más bajos de tau, menos células inflamatorias, menos pérdida de sinapsis en el cerebro y eran mejores construyendo nidos, lo que se podría traducir en importantes implicaciones terapéuticas.

Ver más información:  Litvinchuk A, Suh JH, Guo JL, Lin K, Davis SS, Bien-Ly N, et al. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron[Internet].2023[citado 7 dic 2023]. Published: November 22, 2023. DOI:https://doi.org/10.1016/j.neuron.2023.10.023

8 diciembre 2023| Fuente: Neurología.com| Tomado de |Noticia

sorderaLa pérdida de audición está relacionada con un mayor riesgo de demencia, pero la razón de esta asociación todavía no está clara. Ahora, un grupo de investigadores de la Universidad de California en San Diego y del Instituto de Investigación Sanitaria Kaiser Permanente Washington (EE.UU.) han comprobado que la pérdida de audición va asociada a cambios sutiles en la estructura del cerebro, que podrían ser origen de demencia, según publican en el Journal of Alzheimer’s Disease.

Para indagar en los motivos de esta relación, el estudio utilizó pruebas de audición y resonancia magnética (RM) para determinar si la discapacidad auditiva está asociada a diferencias en regiones específicas del cerebro. Comprobaron que las personas inscritas en este estudio observacional que padecían una discapacidad auditiva mostraban diferencias microestructurales en las áreas auditivas del lóbulo temporal y en zonas del córtex frontal, todo lo cual sugiere que la discapacidad auditiva puede provocar cambios en áreas cerebrales relacionadas con el procesamiento de sonidos, así como en áreas del cerebro relacionadas con la atención. El esfuerzo adicional que supone intentar comprender los sonidos puede producir cambios en el cerebro que aumenten el riesgo de demencia. Si es así, las intervenciones que ayudan a reducir el esfuerzo cognitivo necesario para entender el habla -como el uso de subtítulos en la televisión y las películas, subtítulos en directo o aplicaciones de voz a texto, audífonos y visitar a la gente en ambientes tranquilos en lugar de espacios ruidosos- podrían ser importantes para proteger el cerebro y reducir el riesgo de demencia

Así, los resultados del estudio muestran que la discapacidad auditiva está asociada a cambios cerebrales específicos de la región que pueden producirse debido a la privación sensorial y al mayor esfuerzo necesario para comprender los estímulos de procesamiento auditivo, y subrayan la importancia de proteger la audición evitando la exposición prolongada a sonidos fuertes, llevando protección auditiva cuando se utilizan herramientas ruidosas y reduciendo el uso de medicamentos ototóxicos.

Ver más información:  McEvoy LK, Bergstrom J, Hagler DJ, Wing D, Reas ET. Elevated Pure Tone Thresholds Are Associated with Altered Microstructure in Cortical Areas Related to Auditory Processing and Attentional Allocation. J Alzheimers Dis [Internet]. 2023[citado 30 nov 2023];96(3):1163-1172. doi: 10.3233/JAD-230767. PMID: 37955091

1 diciembre 2023 | Fuente: Neurología.com| Tomado de| Noticia

diciembre 1, 2023 | gleidishurtado | Filed under: Enfermedades neurodegenerativas | Etiquetas: , , , , |

obesidadUna dieta con alto contenido en azúcar, que induce a la obesidad, contribuye potencialmente al aumento del riesgo de trastornos neurodegenerativos, pues desencadena resistencia a la insulina en el cerebro y afecta a la limpieza de los residuos neuronales, según pruebas con moscas de la fruta.

Un equipo del Centro de Investigación del Cáncer Fred Hutchinson (Estados Unidos) publica en PLOS un estudio en el que apuntan esta relación entre la obesidad y trastornos neurodegenerativos como la enfermedad de Alzheimer y de Parkinson. La investigación repercutirá en las terapias diseñadas para reducir el riesgo de desarrollar enfermedades neurodegenerativas, indica la revista.

Aunque se sabe que la obesidad es un factor de riesgo de trastornos neurodegenerativos, aún es un misterio cómo exactamente una conduce a la otra, por lo que el estudio se centró en esta cuestión aprovechando la similitud entre los seres humanos y las moscas de la fruta. La investigación muestra que una dieta rica en azúcar -un rasgo distintivo de la obesidad- provoca resistencia a la insulina en el cerebro, lo que a su vez reduce la capacidad de eliminar los restos neuronales, aumentando así el riesgo de neurodegeneración.

El equipo se centró en el cerebro de la mosca, en concreto en las células gliales porque se sabe que la disfunción microglial conduce a la degeneración neuronal. Los niveles de la proteína PI3k indican la capacidad de una célula para responder a la insulina y el estudio reveló que la dieta alta en azúcares provocaba una reducción de esta en las células gliales, lo que indica resistencia a la insulina. Además, examinaron el equivalente en la mosca de la microglía, llamada glía envolvente, cuya función principal es eliminar los restos neuronales, la cual tenía niveles bajos de la proteína Draper, lo que indicaba un deterioro de su función.

Otras pruebas revelaron que la reducción artificial de los niveles de PI3k provocaba tanto resistencia a la insulina como bajos niveles de Draper en la glía envolvente. Por último, demostraron que después de dañar las neuronas olfativas, la glía envolvente no podía eliminar los axones degenerados en las moscas con la dieta alta en azúcar porque sus niveles de Draper no aumentaban.

El estudio permite comprender cómo ‘las dietas inductoras de obesidad contribuyen potencialmente al aumento del riesgo de trastornos neurodegenerativos’, señalan los autores.

Referencia

Alassaf M, Rajan A. Diet-induced glial insulin resistance impairs the clearance of neuronal debris in Drosophila brain. PLOS Biology[Internet].2023[citado 10 nov 2023]; 21(11): e3002359. https://doi.org/10.1371/journal.pbio.3002359.

11 noviembre 2023|Fuente: EFE. |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A.

alzheimerUn grupo de investigadores del Instituto Tecnológico de Massachusetts (MIT), han llevado a cabo el análisis más amplio realizado hasta la fecha de los cambios genómicos, epigenómicos y transcriptómicos que se producen en cada tipo de célula del cerebro de los pacientes con Alzheimer, con la esperanza de descubrir nuevas dianas para posibles tratamientos de esta enfermedad, según publican en distintos artículos en Cell.

El objetivo fue combinar los conocimientos computacionales y biológicos existentes para estudiar el Alzheimer a una escala sin precedentes en cientos de individuos, algo que nunca se había hecho antes. Así, utilizando más de dos millones de células de más de 400 muestras cerebrales postmortem, analizaron cómo se altera la expresión génica a medida que avanza la enfermedad de Alzheimer. También siguieron los cambios en las modificaciones epigenómicas de las células, que ayudan a determinar qué genes se activan o desactivan en una célula concreta. Los resultados sugieren que una interacción de cambios genéticos y epigenéticos se alimenta mutuamente para impulsar las manifestaciones patológicas de la enfermedad.

Los autores realizaron análisis transcriptómicos y epigenómicos de 427 muestras cerebrales del Religious Orders Study/Memory and Aging Project (ROSMAP), un estudio longitudinal que ha seguido la memoria, la motricidad y otros cambios relacionados con la edad en personas mayores desde 1994. Estas muestras incluían 146 personas sin deterioro cognitivo, 102 con deterioro cognitivo leve y 144 diagnosticadas de demencia relacionada con el Alzheimer.

Ese análisis reveló que las personas con resiliencia cognitiva tenían mayores poblaciones de dos subconjuntos de neuronas inhibitorias en el córtex prefrontal. En las personas con demencia relacionada con el Alzheimer, esas células parecen ser más vulnerables a la neurodegeneración y la muerte celular. Esta revelación sugiere que poblaciones específicas de neuronas inhibitorias podrían ser la clave para mantener la función cognitiva incluso en presencia de la patología del Alzheimer. Este estudio señala estos subtipos específicos de neuronas inhibitorias como un objetivo crucial para futuras investigaciones y tiene el potencial de facilitar el desarrollo de intervenciones terapéuticas dirigidas a preservar las capacidades cognitivas en poblaciones envejecidas.

Referencia

Sun N, Victor MB, Park YP, et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell[Internet]. 2023[citado 2 oct 2023];186(20):4386-4403.e29. doi: 10.1016/j.cell.2023.08.037

13 octubre 2023│Fuente: Neurología. com│ Tomado de Noticia

octubre 13, 2023 | gleidishurtado | Filed under: Enfermedades neurodegenerativas | Etiquetas: , , , |

soledad1La soledad puede hacer que muchos se sientan desolados, pero una nueva investigación sugiere que también puede hacer que las personas sean vulnerables a la enfermedad de Parkinson.

Entre más de 490 000 personas registradas en el UK Biobank (un proyecto de investigación que reúne información médica y genética de miles de voluntarios en el Reino Unido), que fueron seguidas hasta por 15 años, la soledad parecía aumentar las posibilidades de un diagnóstico de Parkinson en un 37 %.

«La asociación entre la soledad y la aparición de la enfermedad de Parkinson no se debió a factores de riesgo genéticos, clínicos o conductuales compartidos», dijo la investigadora principal Angelina Sutin, profesora en el departamento de ciencias del comportamiento y medicina social de la Facultad de Medicina de la Universidad Estatal de Florida en Tallahassee.

Aunque este estudio no puede probar que la soledad cause la enfermedad de Parkinson, parece haber una conexión, dijo Sutin.

«Demostramos que hay una asociación entre la soledad y el desarrollo de la enfermedad de Parkinson, no que la soledad cause la enfermedad de Parkinson», enfatizó.

Sutin dijo que la soledad ha sido identificada como una preocupación significativa de salud pública por el Cirujano General de los EE.UU., las Academias Nacionales de Ciencias, Ingeniería y Medicina, y la Organización Mundial de la Salud.

«Este estudio suma al cuerpo de evidencia sobre los malos resultados asociados con la soledad, particularmente enfermedades neurodegenerativas», dijo. «La soledad ha sido asociada con la enfermedad de Alzheimer y otros tipos de demencia. La investigación actual indica que también es un factor de riesgo para la enfermedad de Parkinson.»

Varios factores pueden estar vinculados a por qué la soledad puede aumentar el riesgo de desarrollar la enfermedad de Parkinson, sugirió Sutin.

«Encontramos que las vías conductuales y clínicas explican una pequeña parte de la asociación. La asociación podría deberse a otros factores conductuales y clínicos que no consideramos», agregó. «También podrían haber vías metabólicas, inflamatorias, neuronales y endocrinas.»

La soledad parece estar asociada con una peor salud cerebral, tal vez a través de una mayor inflamación u otros procesos neurodegenerativos y no es necesariamente específica de la enfermedad de Parkinson, dijo Sutin.

«Puede ser que la soledad haga que el cerebro sea más susceptible a la neurodegeneración, lo que para algunas personas podría llevar a la enfermedad de Alzheimer y para otros a la enfermedad de Parkinson», explicó.

Por otro lado, estar socialmente conectado puede reducir el riesgo de la enfermedad de Parkinson. «No probamos esta asociación en el estudio actual, pero sí, se cree que la conexión social es protectora. Se necesita más investigación para abordar esta cuestión», dijo Sutin.

El informe fue publicado en línea el 2 de octubre en JAMA Neurology.

«Sabemos que la mayoría de las personas que se sienten solas también viven solas, lo cual es cada vez más la condición de muchas personas mayores», dijo el Dr. Alessandro Di Rocco, director del sistema de neurología, Parkinson y trastornos del movimiento en Northwell Health en la ciudad de Nueva York. El Dr. Di Rocco no estuvo involucrado con el nuevo estudio.

Vivir solo puede llevar consigo algunas elecciones de vida poco saludables, dijo Di Rocco. Por ejemplo, muchas personas mayores que viven solas pueden no estar comiendo una dieta saludable, sino que más bien subsisten con aperitivos, comida rápida u otras opciones no saludables. También pueden ser menos activos físicamente.

«La soledad puede no ser buena para el cerebro debido a la falta de estimulación cerebral diaria», agregó. «Puede que tengas la televisión encendida, puedes tener otras fuentes (de estimulación), pero el nivel de compromiso cerebral puede estar disminuido.»

La soledad puede resultar en un mayor sentido de estrés o malestar psicológico capaz de ocasionar que el cerebro se vuelva más vulnerable, sugirió Di Rocco.

«La soledad puede no causar Parkinson, pero hasta cierto punto lo predispone. La predisposición tiene que ver con el hecho de que el cerebro puede no ser capaz de defenderse de lo que biológicamente sucede, lo que puede llevar al desarrollo de Parkinson», dijo.

Di Rocco señaló que la actividad física mantiene al cerebro saludable y lo mismo puede decirse de la actividad mental.

«La actividad física ayuda a retrasar la progresión de la enfermedad. También sabemos que el compromiso intelectual es beneficioso de manera muy similar y disminuye la probabilidad de que una persona desarrolle problemas cognitivos», dijo. «Para las personas que tienen problemas cognitivos, ya sea relacionados con el Parkinson, el Alzheimer u otros trastornos, estar comprometido intelectualmente es probablemente la mejor medicación que tenemos.»

Referencia

Terracciano A, Luchetti M, Karakose S, Stephan Y, Sutin AR. Loneliness and Risk of Parkinson Disease. JAMA Neurol[Internet].2023[citado 9 oct 2023]. doi:10.1001/jamaneurol.2023.3382

10 octubre 2023 | Fuente: consumer.healthday.com| Tomado de Salud Mental

octubre 10, 2023 | gleidishurtado | Filed under: Enfermedad de Parkinson, Enfermedades neurodegenerativas | Etiquetas: , , |

enfermedad neurologicaUna investigación hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal.

Un nuevo estudio de la Universidad de Barcelona podría impulsar el diseño de futuras estrategias para regenerar zonas cerebrales dañadas en enfermedades neurodegenerativas. El trabajo hace hincapié en el papel de las vesículas extracelulares derivadas de neuronas en los procesos que modulan la plasticidad sináptica y las vías de señalización neuronal. Además, los resultados perfilan un nuevo escenario para usar estas vesículas extracelulares derivadas de neuronas sanas —capaces de transportar moléculas entre células— en tratamientos contra enfermedades neurodegenerativas.

El estudio, publicado en la revista Journal of Extracellular Vesicles, tiene como primera autora a la estudiante predoctoral Julia Solana-Balaguer, y está dirigido por la profesora Cristina Malagelada, de la Facultad de Medicina y Ciencias de la Salud y el Instituto de Neurociencias (UBneuro) de la Universidad de Barcelona. También participan otros destacados investigadores del UBneuro, la Facultad de Física y el Instituto de Sistemas Complejos (UBICS) de la UB, el Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS) y las áreas del Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) y de Epidemiología y Salud Pública (CIBERESP), entre otros.

La comunicación neurona a neurona

Las neuronas son capaces de formar unas vesículas que transportan moléculas —proteínas, lípidos, ARN, etc.— hacia el exterior, y regulan la comunicación entre células nerviosas. Se trata de las vesículas extracelulares, y todavía hoy existen muchas incógnitas sobre el papel que juegan en la comunicación entre las neuronas del sistema nervioso.

El nuevo estudio, realizado con cultivos neuronales in vitro de modelos animales, revela que estas vesículas son capaces de transportar proteínas —por ejemplo, PSD-95 y VGLUT-1— y otros factores determinantes en los procesos de comunicación entre neuronas.

«Aunque las vesículas extracelulares se han propuesto como reguladoras de la comunicación intercelular en el cerebro, la mayoría de estudios lo demuestran en modelos que se alejan de un estado fisiológico y en vesículas cuyo origen se desconoce. En este estudio demostramos que, en un modelo fisiológico sin patologías, las vesículas extracelulares específicas de las neuronas regulan la comunicación neurona a neurona y promueven la plasticidad sináptica», detalla Cristina Malagelada, profesora del Departamento de Biomedicina UB e investigadora del CIBERNED.

Nuevas estrategias para combatir la neurodegeneración

En el marco del estudio, el equipo ha aplicado técnicas complementarias para aislar las vesículas extracelulares que liberan las neuronas, como la ultracentrifugación secuencial o la cromatografía de exclusión por tamaño. Además, se han utilizado técnicas para caracterizarlas, como el análisis de nano seguimiento de partículas y la microscopía electrónica de transmisión. Estas vesículas también se han utilizado para realizar tratamientos en neuronas sanas y neuronas privadas de nutrientes.

«Una vez entendida la comunicación neurona-neurona en un estado no patológico, queremos dirigir esta cuestión en un contexto de neurodegeneración. Por eso, es determinante poder caracterizar las vesículas que liberan las neuronas en las enfermedades neurodegenerativas para poder entender la progresión de estas patologías. Además, queremos explorar si en un modelo patológico podemos revertir algún rasgo más neurodegenerativo con el tratamiento de vesículas extracelulares derivadas de neuronas sanas», cierra la investigadora.

Referencia

Solana-Balaguer J, Campoy-Campos G, Martín-Flores N, Pérez-Sisqués L, Sitjà-Roqueta L, Kucukerden M, et al. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles[Internet].2023[citado 7 oct 2023]; 12(9) e12355. https://doi.org/10.1002/jev2.12355

9 octubre 2023 |Fuente: dicyt| Tomado de Noticias Ciencias Sociales 

octubre 9, 2023 | gleidishurtado | Filed under: Enfermedades neurodegenerativas | Etiquetas: , , |

  • Noticias por fecha

    abril 2025
    L M X J V S D
    « mar    
     123456
    78910111213
    14151617181920
    21222324252627
    282930  
  • Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave