diente de lecheLos ‘dientes de leche’ como fábrica de células neuronales para el diseño de terapias personalizadas dirigidas a niños que sufren enfermedades raras relacionadas con el sistema nervioso, como pueden ser el autismo, las leucodistrofias o el síndrome de Rett.

Este es uno de los últimos descubrimientos de un grupo de científicos liderados por Salvador Martínez, del Instituto de Neurociencias de Alicante (IN), centro mixto del CSIC y de la Universidad Miguel Hernández de Elche (UMH), que ha observado las posibilidades para la generación de neuronas a partir de las células madre la cresta neural que se hallan dentro de la pulpa dental de los ‘dientes de leche’.

‘El diente de leche nos permite extraer fácilmente células que pueden convertirse en neuronas de los niños que tienen una enfermedad rara.

Es un modelo celular que sirve para conocer mejor los mecanismos de la alteración en un modelo humano, y determinar qué fármacos o tratamientos que pueden mejorar el funcionamiento de estas células, y por lo tanto mejorar la función cerebral en estas enfermedades’, ha explicado a EFE Martínez.

Una de las grandes ventajas de los dientes de leche es que estos llegan a los investigadores cuando son desechados por la naturaleza de forma natural, en el cambio de las piezas antes de la adolescencia, es decir mediante un proceso ‘nada invasivo’.

Las células se extraen de forma sencilla y son utilizables ‘in vitro’ (en cultivos celulares) evitando la penosa opción alternativa de una biopsia de tejido subcutáneo en pacientes muy jóvenes, según el científico, que lleva unos cinco años en esta investigación y quien ha incidido en que ‘los dientes de leche son una fuente para un modelo celular de neuronas fácilmente obtenible y manejable’.

De esta forma, los científicos pueden trabajar y crear neuronas humanas con la enfermedad para estudiar y operar con ellas en placas de cultivo y, de una forma relativamente fácil y barata, avanzar en una terapia celular específica para cada caso.

El objetivo es descubrir los mecanismos que subyacen a estas enfermedades genéticas que van asociadas a un gran proceso de neurodegeneración y que están asociadas a la discapacidad intelectual para, a continuación, probar nuevas soluciones. En este trabajo han participado un grupo amplio de investigadores, entre ellos el neuropediatra del hospital de San Juan de Alicante Francisco Carratalá, así como Marta Martínez y Carlos Bueno del Instituto Murciano de Investigación Biosanitaria (IMIB); y Claudia Pérez, del Instituto de Neurociencias (IN-UMH-CSIC).

Los investigadores se han planteado llevar adelante un proyecto que, con el nombre de ‘Ratoncito Pérez de las enfermedades raras’, consistiría en la creación de un banco de células de dientes de leche con enfermedades raras para facilitar la adquisición de muestras a los investigadores interesados en avanzar en las posibles terapias.

Los ‘dientes de leche’ suelen caerse entre los 5 y 11 años de edad mediante una extracción espontánea y natural, pero para que puedan ser aprovechados para la ciencia es necesario que la familia del menor ya diagnosticado de una enfermedad rara esté prevenido y actúe con rapidez.

De esta forma, deben tratar de evitar que la pieza se seque, para lo cual hay que recogerla en poco tiempo para o bien llevarla al laboratorio en pocas horas o bien conservarla en frío (en la nevera) hasta tres días en una bolsita con la propia saliva del menor.

11 de febrero 2024| Fuente: EFE| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A

neuronasUna investigación ha relevado un mecanismo molecular relacionado con la muerte neuronal y con las alteraciones motoras en los mamíferos más evolucionados, que podría ayudar en la lucha contra las enfermedades neurodegenerativas. Así lo ha informado la Universidad de Barcelona, que ha dirigido la investigación junto al Instituto de Biología Molecular de Barcelona y al Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas. El estudio, que se ha llevado a cabo con modelos animales y cultivos celulares y se ha publicado en la revista ‘Science Signaling’, identifica por primera vez un mecanismo molecular que regula el transporte de las mitocondrias dentro de las neuronas y la muerte neuronal. En las neuronas, el proceso de transporte de mitocondrias es decisivo, ya que estos orgánulos deben estar presentes a lo largo de todos los axones y dendritas —unas extensiones de las neuronas— para aportar energía a la neurotransmisión y a las funciones neuronales, unos procesos con una gran demanda energética. Este gran consumo depende de una distribución muy específica y precisa de las mitocondrias en el interior de las neuronas, ha afirmado el codirector de la investigación y miembro del Departamento de Biología Celular, Fisiología e Inmunología de la Facultad de Biología de la UB, Eduardo Soriano. Este mecanismo molecular, presente exclusivamente en los mamíferos más evolucionados, podría ayudar a encontrar nuevas dianas terapéuticas contra enfermedades neurodegenerativas como la enfermedad de Parkinson, patologías neuromusculares o incluso algunos tipos de tumores, ha subrayado la UB.

7 de febrero 2024| Fuente: EFE| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A

febrero 9, 2024 | gleidishurtado | Filed under: neurona, Salud | Etiquetas: , , |

cerebro-foto2jpgLa esclerosis lateral amiotrófica (ELA) es una enfermedad neurodegenerativa que afecta a las neuronas del cerebro y la médula espinal provocando la pérdida del control muscular. Un estudio de la Universidad de Barcelona ha diseñado una potencial estrategia terapéutica para abordar esta patología que todavía no tiene tratamiento. Se trata de una trampa molecular que evita que uno de los compuestos peptídicos causantes de la ELA genética más común, el dipéptido polyGR, provoque sus efectos tóxicos en el organismo. Los resultados muestran que esta estrategia reduce la muerte de las neuronas de los pacientes y en un modelo animal (moscas del vinagre) de la enfermedad.

Los primeros autores de esta investigación internacional publicada en la revista Science Advances son los expertos Juan Alberto Ortega Cano, de la Facultad de Medicina y Ciencias de la Salud y el Instituto de Neurociencias (UBneuro) de la UB, e Ivan Sasselli, del Centro de Física de Materiales (CSIC-UPV/EHU). También han participado investigadores de la Universidad de Zaragoza y la Northwestern University (Estados Unidos), entre otros.

Una de las causas genéticas más frecuentes de la ELA es la mutación en el gen C9orf72, ya que se encuentra en aproximadamente el 33 % de los pacientes afectados por la ELA familiar y el 5 % de los afectados por la ELA esporádica en España. En estos pacientes se generan unos dipéptidos con gran cantidad de cargas positivas que generan efectos altamente tóxicos en las neuronas motoras. En la primera parte del estudio, los investigadores combinaron técnicas computacionales y experimentales para mejorar la comprensión molecular de estos dipéptidos y cómo producen este proceso patológico.

Una unión tóxica para las neuronas

Los resultados mostraron que la toxicidad de estos compuestos se debe en parte a los que se unen al ARN ribosomal (ARNr), una molécula que participa en el proceso de traducción de la información genética y la síntesis de proteínas en la célula. «Hemos visto que estos dipéptidos, especialmente los ricos en el aminoácido arginina (poli-glicina-arginina o poly-GR), se unen a una región concreta del ARNr afectando a la biosíntesis de ribosomas (pequeñas estructuras que se encargan de sintetizar las proteínas de nuestro organismo) y la traducción de proteínas en neuronas motoras humanas, produciendo la muerte de estas», explica el profesor Juan Alberto Ortega Cano. «Además —añade el investigador— esta interacción de los poly-GR con el ARNr es mucho más fuerte que la interacción del poly-GR con otras proteínas ribosomales que se habían descrito previamente en otros estudios, y explica por qué estos dipéptidos tienen gran afinidad en unirse a los ribosomas de las células».

Ante estos resultados, los investigadores diseñaron una estrategia innovadora para engañar a los dipéptidos poly-GR y reducir su toxicidad. Crearon una trampa, una molécula que imitaba la secuencia específica del ARNr con la que se unen los poly-GR durante el proceso patológico, con el objetivo de evitar así los efectos neurotóxicos de esta unión. La aplicación de esta estrategia en neuronas derivadas de tejido de pacientes in vitro y en modelos de la enfermedad (moscas del vinagre) in vivo muestran que «reduce los defectos en la biosíntesis de ribosomas en la traducción de proteínas y la toxicidad en células que expresan poly-GR, así como la muerte en motoneuronas de pacientes de ELA con mutaciones en el gen C9orf72,», detalla el investigador.

Aunque todavía queda mucha investigación por validar y comprender completamente el funcionamiento de esta estrategia, los investigadores señalan en el artículo que estos resultados, prometedores, refuerzan la idea de que el uso de trampas de ARN es útil «no solamente para estudiar las interacciones ARN-proteína, sino también para proteger a las neuronas de los efectos perjudiciales de proteínas anómalas que se generan en otras enfermedades neurodegenerativas».

Referencia

Ortega JA, Sasselli IR, Boccitto M, Fleming AC, Forturna TR, Li Y, et al. CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. Sci Adv[Internet]. 2023[citado 15 nov 2023]; 10;9(45):eadf7997. doi: 10.1126/sciadv.adf7997. Epub 2023 Nov 10.

17 noviembre 2023 | Fuente: EurekAlert| Tomado de Comunicado de Prensa

fibra optica1Este dispositivo, elaborado con un material extraído del alga agar, podrá utilizarse para monitorear estímulos producidos en el cerebro o en los músculos, o como interfaz auxiliar en la conexión humano-computadora en tecnologías de rehabilitación.

Las señales eléctricas comandan un enorme conjunto de actividades en el cuerpo humano, desde el intercambio de mensajes entre las neuronas en el cerebro hasta la estimulación del músculo cardíaco y los impulsos que permiten mover las manos y los pies, por mencionar tan solamente algunos ejemplos. Con la mira de las aplicaciones puesta sobre el monitoreo o la modulación de esas señales con fines médicos, ha sido desarrollado un tipo de fibra óptica biocompatible y biodegradable elaborada con el alga agar.

Este trabajo, que contó con el apoyo de la FAPESP, estuvo encabezado por dos profesores de la Universidad de Campinas, en el estado de São Paulo, Brasil –Eric Fujiwara, de la Facultad de Ingeniería Mecánica (FEM-Unicamp), y Cristiano Monteiro de Barros Cordeiro, del Instituto de Física Gleb Wataghin (IFGW-Unicamp)–, y por el profesor Hiromasa Oku, de la Universidad de Gunma, en Japón. Y un artículo al respecto salió publicado en la revista Scientific Reports, perteneciente al grupo Nature.

“Los dispositivos biocompatibles son imprescindibles cuando se utiliza la fibra óptica en aplicaciones médicas tales como el monitoreo de parámetros vitales, la fototerapia o la optogenética [este término alude al estudio y el control de la actividad de células específicas mediante técnicas que combinan óptica, genética y bioingeniería], entre otras. Asimismo, la fibra óptica elaborada con materiales biodegradables constituye una alternativa a las tecnologías disponibles para las telecomunicaciones, que emplean fibras de vidrio o de plástico”, dice Fujiwara.

La nueva fibra se elaboró con agar, un material transparente, flexible, comestible y renovable, extraído de las algas rojas. Los mismos investigadores ya habían desarrollado una fibra óptica biocompatible de agar para el monitoreo de la concentración química y la humedad (lea más en: agencia.fapesp.br/33696). “El método de fabricación consiste básicamente en rellenar moldes cilíndricos con soluciones de agar. El actual trabajo expande la gama de aplicaciones al proponer un nuevo tipo de sensor óptico que explota la conductividad eléctrica del agar”, afirma.

Fujiwara explica que, excitada por luz coherente, la fibra produce patrones luminosos granulares que evolucionan espacial y temporalmente. La corriente eléctrica presente en el medio atraviesa la fibra y, al hacerlo, modula el índice de refracción del agar generando perturbaciones en los patrones granulares. “Al analizar estas perturbaciones, es posible determinar la magnitud, la dirección y el sentido de los estímulos eléctricos mediante mediciones confiables para corrientes iguales o incluso menores que 100 microamperios [μA]”, comenta.

La capacidad de detectar señales eléctricas tan sutiles inspira posibles aplicaciones en configuraciones biomédicas. “Esta idea puede explotarse para desarrollar sistemas de detección destinados a monitorear estímulos bioeléctricos producidos en el cerebro o en los músculos, como una alternativa biodegradable a los electrodos convencionales. En este caso, las señales ópticas pueden decodificarse para diagnosticar trastornos. Otra posibilidad consiste en utilizar la fibra como interfaz auxiliar en la conexión entre humano y computadora, en tecnologías de asistencia o rehabilitación”, ejemplifica Fujiwara.

La respuesta del sensor puede perfeccionarse ajustando la composición química del material. Y el hecho de que el agar sea moldeable en diversas geometrías vuelve factible la confección de lentes y otros dispositivos ópticos con sensibilidad a la corriente eléctrica. Más que todo, la gran ventaja reside en que, tras su uso, la fibra puede ser absorbida por el organismo evitando intervenciones quirúrgicas adicionales.

Fujiwara remarca que este estudio se ha llevado a cabo en el ámbito de los laboratorios, por ende, se encuentra lejos aún de su aplicación tecnológica. Pero la determinación rigurosa de los parámetros físicos de respuesta óptica a la corriente eléctrica fija un terreno sólido para la eventual fabricación de dispositivos biomédicos.

Referencia

Fujiwara E, Rosa LO, Oku H, Cordeiro C.  Agar-based optical sensors for electric current measurements. Sci Rep[Internet].2023[citado 28 sep 2023]13: 517. https://doi.org/10.1038/s41598-023-40749-7

29 septiembre 2023  Fuente: Dicyt   Tomado de Ciencias Sociales   

mutacion11.jpnLas mutaciones del gen NEK1 se han relacionado con hasta el 2% de todos los casos de ELA, lo que lo convierte en una de las causas más conocidas de la enfermedad, pero se desconocía cómo el gen mutado altera la función de la motoneurona y provoca su degeneración y muerte. Ahora, científicos de Northwestern Medicine, de la Universidad de Northwestern (EE.UU.), han descubierto por primera vez cómo este gen mutado conduce a la ELA, según publican en Science Advances.

Los investigadores descubrieron que la mutación causa dos problemas en la neurona. El primero es que hace que las estructuras que sostienen el axón en la neurona se vuelvan menos estables y susceptibles de colapsarse. El segundo problema es que la mutación altera la capacidad de la neurona para importar carga en forma de ARN o proteínas a su núcleo (importación nuclear). Sin la importación de ARN y proteínas críticas, se interrumpe el papel operativo del núcleo para la función de la célula. Al esclarecer estas dos vías, sugieren que son grandes dianas terapéuticas para la enfermedad.

Los autores consideran que este descubrimiento es importante porque un gran avance en la investigación de la ELA en los últimos años fue descubrir que la importación nuclear está alterada en otras formas de ELA genética, de modo que sus resultados relacionan esta nueva causa de ELA con otras causas genéticas en las que se interrumpe el mismo proceso. De hecho, una de las principales cuestiones sin resolver en este campo es si la ELA es una sola enfermedad o un conjunto de versiones genéticamente distintas de menor tamaño bajo el «paraguas» de los mismos problemas clínicos, y este descubrimiento, referido a los mismos mecanismos destructivos en otras formas genéticas de ELA, lleva a creer que se trata de la misma enfermedad, algo fundamental para desarrollar tratamientos y para diseñar ensayos clínicos óptimos dirigidos a poblaciones específicas de pacientes con ELA.

Referencia

Jacob R. Mann et al.  Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. Sci. adv. 9,eadi5548(2023). DOI:10.1126/sciadv.adi5548

https://www.science.org/doi/10.1126/sciadv.adi5548#tab-citations

28/08/2023(Neurología.com) Tomado- Noticia   © Viguera Editores, S.L.U. 2023

septiembre 6, 2023 | gleidishurtado | Filed under: Enfermedades Neurológicas, Genética, neurona | Etiquetas: , , , , , |

cerebro-foto2jpgUn nuevo método, desarrollado por investigadores de la Universidad Técnica de Múnich (TUM) en Alemania, permitirá que sea mucho más fácil medir la actividad cerebral humana hasta el nivel celular. El método se basa en microelectrodos junto con el apoyo de pacientes con tumores cerebrales, que participan en los estudios mientras se les practica una cirugía cerebral ‘despiertos’. Esta técnica permitió al equipo identificar cómo el cerebro procesa los números.

En el trabajo, publicado en Cell Reports, los investigadores han evidenciado que algunas neuronas del cerebro de los participantes estaban especializadas en el manejo de números concretos. Cada una de las neuronas implicadas en este proceso, estaba especialmente activa cuando se presentaba al paciente su número ‘preferido’ de elementos en un patrón de puntos. En menor medida, esto ocurría también cuando los sujetos procesaban símbolos numéricos. Para llegar a este resultado, los investigadores tuvieron que resolver primero un problema fundamental, centrado en que el cerebro funciona mediante impulsos eléctricos. Así que es detectando directamente estas señales cuando es posible aprender más sobre la cognición y la percepción.

Por ello, desarrollaron un método que adapta tecnologías establecidas y abre posibilidades totalmente nuevas en neurociencia. En el centro del procedimiento se encuentran conjuntos de microelectrodos que han sido sometidos a pruebas exhaustivas en estudios con animales. Para garantizar que los electrodos produjeran datos fiables en cirugías con el cerebro humano despierto, los investigadores tuvieron que reconfigurarlos en estrecha colaboración con el fabricante. El truco consistía en aumentar la distancia entre los sensores en forma de aguja utilizados para registrar las actividades eléctricas de una célula. El procedimiento tiene dos ventajas fundamentales, en primer lugar, la cirugía tumoral permitió acceder a una zona mucho más amplia del cerebro, y en segundo lugar, con los electrodos utilizados, que han sido estandarizados y probados en años de ensayos con animales, muchos más centros médicos tendrán la oportunidad de medir la actividad neuronal en el futuro.

Neurología.com

julio 20, 2023 | borrell | Filed under: actividad cerebral, Impulsos eléctricos, microelectrodos, neurona, Problemas de Salud | Etiquetas: |

  • Noticias por fecha

    septiembre 2024
    L M X J V S D
    « ago    
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    30  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración