sep
29
Investigadores de la Universidad de Nueva Gales del Sur en Sydney (Australia) han publicado un estudio en JAMA que apunta que el tratamiento antihipertensivo continuado a lo largo de la vida es una parte importante de la prevención de la demencia. Este metaanálisis, que incluye datos de 34.000 adultos mayores en 17 estudios, ha descubierto que el uso de antihipertensivos se asocia con un menor riesgo de demencia en comparación con los individuos con hipertensión no tratada a lo largo de todas las edades en las últimas etapas de la vida. Los individuos con hipertensión tratada no presentaron un mayor riesgo de demencia en comparación con los controles sanos.
La hipertensión en la mediana edad se asocia con un aumento del riesgo de demencia por todas las causas de aproximadamente un 60 % y un aumento del riesgo de demencia de Alzheimer de aproximadamente un 25 %. Sin embargo, en la tercera edad, esta asociación no se ha observado de forma consistente, y la mayoría de los estudios no han encontrado ninguna asociación o han encontrado que una mayor presión arterial sistólica (PAS) o diastólica (PAD) se asociaba con un menor riesgo de demencia.
El análisis incluyó 17 estudios con 34 519 adultos mayores residentes en la comunidad (20 160 mujeres) con una edad media de 72,5 años y un seguimiento medio de 4,3 años. En el análisis principal, parcialmente ajustado, que incluyó 14 estudios, los individuos con hipertensión no tratada tenían un 42 % más de riesgo de demencia en comparación con los controles sanos y un 26 % más de riesgo en comparación con los individuos con hipertensión tratada.
Los autores concluyen que la hipertensión es un factor de riesgo asociado con la demencia en la vejez. El uso de antihipertensivos se asoció con una disminución del riesgo de demencia en personas con hipertensión al final de la vida; por lo tanto, la reducción del riesgo de demencia puede ser uno de los múltiples objetivos del tratamiento antihipertensivo al final de la vida.
Referencia
Lennon MJ, Pan Lam BC, Lipnicki DM, Crawford JD, Peter R, Schutte AE, et al. Use of Antihypertensives, Blood Pressure, and Estimated Risk of Dementia in Late Life: An Individual Participant Data Meta-Analysis. JAMA Netw Open [Internet].2023[citado 28 sep 2023];6(9): e2333353. doi: 10.1001/jamanetworkopen.2023.33353.
29 septiembre 2023 Fuente: Neurología.com Tomado de Noticias
sep
13
Los investigadores desarrollaron unas trampas especiales que les permitieron resolver el puzle
US/DICYT Nuestras proteínas son las principales responsables de regular el funcionamiento de nuestras células. En determinadas situaciones, estas proteínas experimentan modificaciones para poder enfrentarse a determinadas situaciones de manera rápida, eficaz y reversible. Una de estas modificaciones es la sumoilación, que consiste en acoplar SUMO, un pequeño fragmento proteico a las proteínas diana.
La simuilación es muy importante para proteger y regular el funcionamiento de la maquinaria proteica en situaciones de estrés, por ejemplo, cuando se produce un infarto cerebral, para permitir la rápida proliferación celular o para ayudar en los procesos de la reparación del daño en el ADN, entre otros. De hecho, muchos tumores dependen enormemente de la sumoilación para mantener su inmortalidad y multiplicarse indefinidamente y por ello, distintos fármacos que inhiben la maquinaria de sumoilación están siendo evaluados para tratamientos de tumores muy agresivos como el cáncer de páncreas y distintos tipos de linfomas.
Hasta ahora conocíamos qué proteínas eran susceptibles de experimentar la sumoilación en un momento dado y muchas de las distintas enzimas que eran capaces de realizar esta modificación. Sin embargo, no sabíamos, cuáles eran las proteínas que cada una de estas enzimas podían sumoilar, o por cuáles enzimas podían ser sumoiladas cada proteína.
Se ha publicado en la revista Science Advances un trabajo del grupo de investigación en Señalización y proteómica por ubiquitina y similares de la Universidad de Sevilla en CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), dirigido por Román González Prieto. Además, ha dirigido y coordinado el trabajo con otros grupo de investigación de las Universidades de Leiden y Amsterdam en Países Bajos, el instituto Max Plank de Alemania y el ETH de Zurich en Suiza.
En este trabajo, los investigadores desarrollaron unas trampas especiales que les permitieron resolver el puzle de qué proteínas son sumoiladas por qué enzimas. Los datos obtenidos nos permiten hacer por primera vez nuevas conexiones entre la desregulación de estas enzimas y el desarrollo de enfermedades neurodegenerativas como el párkinson, la resistencia de ciertos tumores a tratamientos de quimioterapia o el control de la expresión de los genes durante el desarrollo embrionario, entre otros.
Referencia
Daniel Salas-Lloret D,Jansen NS, Nagamalleswari E, van der Meulen C, Ekaterina Gracheva E, H de Ru A. SUMO-activated target traps (SATTs) enable the identification of a comprehensive E3-specific SUMO proteome. Sci Adv. 2023 Aug 2;9(31):eadh2073. PMID: 37531430 PMCID: PMC10396300 DOI: 10.1126/sciadv.adh2073
Fuente:(dicyt.com) Tomado-Salud © 2023 Fundación 3CIN
sep
12
Un grupo de investigadores de Costa Rica, Colombia, México y España sintetizó la evidencia existente acerca de los papeles del ejercicio y la microbiota intestinal en la neurodegeneración y encontró lo siguiente:[1]
- La microbiota intestinal afecta los cambios metabólicos en enfermedades neurológicas, mientras que el ejercicio beneficia la salud cerebral y la función cognitiva, posiblemente retrasando trastornos neurológicos graves.
¿Por qué es importante este estudio?
A pesar de la asignación de recursos significativos para estudiar la influencia de la relación entre el ejercicio y la microbiota intestinal en enfermedades neurológicas, aún persiste incertidumbre en cuanto a la conexión específica entre la microbiota intestinal y el ejercicio en el contexto de la salud cerebral. El propósito de este estudio fue aclarar esta interacción y promover un enfoque integral en la atención médica.
Metodología
Se realizó una revisión narrativa que abarcó el periodo de 2013 a 2023.
Resultados principales
- El ejercicio físico reduce la inflamación y mejora la respuesta inmune. Al hacer ejercicio se producen exerquinas, que mejoran la salud cardiovascular, el metabolismo, la respuesta inmunológica y el bienestar neurológico. Además, se aumenta la producción de interleucinas antiinflamatorias (p. ej, interleucina-10) y se reduce la producción de interleucinas proinflamatorias (p. ej., interleucina-6), disminuyendo así la inflamación en el cuerpo y mejorando la respuesta inmunológica.
- El ejercicio físico modula la microbiota intestinal a través del lactato, influyendo en la diversidad y composición bacteriana. La actividad física regular aumenta firmicutes y actinobacteria, junto con bacterias productoras de butirato y enzimas antioxidantes, mientras reduce las bacterias proinflamatorias promoviendo la salud intestinal. Estos beneficios se extienden a personas con enfermedades crónicas, disminuyendo la inflamación sistémica y los síntomas de la enfermedad.
El ejercicio puede aumentar la expresión de transportadores de lactato en el músculo y el intestino mejorando la absorción de productos metabólicos beneficiosos, como los ácidos grasos de cadena corta producidos por las bacterias intestinales.
El ejercicio físico como neuromodulador: el entrenamiento de resistencia aumenta las endorfinas y endocannabinoides, reduciendo ansiedad, trastornos del sueño y depresión, mientras que eleva los niveles de serotonina y dopamina, mejorando la cognición y retrasando respuestas neurodegenerativas. El ejercicio cardiovascular mejora las habilidades cognitivas y neurológicas en adultos sanos y con limitaciones cognitivas.
- El papel de la microbiota en el deterioro cognitivo: se ha encontrado una correlación entre la desregulación de la microbiota intestinal y diversos trastornos neurodegenerativos, como enfermedad de Parkinson, enfermedad de Alzheimer y esclerosis múltiple.
- El ejercicio físico tiene lugar en los síntomas motores, el equilibrio y la calidad de vida en pacientes con enfermedad de Parkinson. A la par, en Alzheimer resulta benéfico en deterioro neurocognitivo leve y el ejercicio cardiovascular puede r
- educir prevalencia, morbilidad y mortalidad y disminuir la velocidad de deterioro cognitivo. A largo plazo los programas de ejercicio pueden prevenir los factores de riesgo de la enfermedad de Alzheimer, mejorar el flujo sanguíneo, aumentar el volumen del hipocampo y mejorar la neurogénesis. En la esclerosis múltiple se han utilizado diversas modalidades de ejercicio (p. ej., cardiovascular, de fuerza y de intervalos) y se ha demostrado que pueden ayudar a mitigar el deterioro en la movilidad al caminar y reducir la progresión de la enfermedad. Además el ejercicio físico puede prevenir el deterioro cognitivo, que predice la discapacidad física posterior en esclerosis múltiple. El papel del ejercicio en el tratamiento de la esclerosis lateral amiotrófica es controversial, pero cuando se implementa tempranamente en la enfermedad puede ayudar a mejorar la función motora y aumentar la independencia.
- Limitaciones
El estudio presenta ciertas limitaciones en términos de exhaustividad y la selección de artículos al no seguir la metodología de una revisión sistemática.
Conclusiones
Se destaca la importancia de incluir estrategias multimodales que incluyan ejercicio, dieta, higiene del sueño y terapia psicológica como parte integral de las estrategias de tratamiento y gestión de enfermedades degenerativas.
Asimismo, los hallazgos resaltan la necesidad de investigaciones futuras en este campo. Además, los profesionales de la salud pueden considerar prescribir programas de ejercicio personalizados para sus pacientes, teniendo en cuenta sus necesidades y capacidades individuales.
Los autores han declarado no tener ningún conflicto de interés económico pertinente.
Referencia
Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez Guardado I. Examining the Interaction between Exercise, Gut Microbiota, and Neurodegeneration: Future Research Directions. Biomedicines. 2023;11(8):2267. Dio: 10.3390/biomedicines11082267. PMID: 37626763.
https://www.mdpi.com/2227-9059/11/8/2267
11/09/2023
Fuente:( Medscape,com) Tomado de Noticias y Perspectivas Copyright © 1994-2023 by WebMD
sep
9
Científicos de la Universidad de Plymouth (UK) han descubierto una posible causa adicional de las mutaciones genéticas que dan lugar a afecciones raras como la enfermedad de Huntington (EH). Se sabe que estas enfermedades neurodegenerativas, entre las que también se encuentran la mayoría de las ataxias espinocerebelosas (AEC), están causadas por una expansión de las repeticiones CAG (citosina-adenina-guanina) dentro de un gen que, a su vez, da lugar a un tracto poliglutamínico (poliQ) expandido en una proteína. Anteriormente, se pensaba que el daño en estas enfermedades genéticas estaba causado únicamente por el aumento de la toxicidad de los agregados proteicos.
Sin embargo, un nuevo estudio, publicado en Nature Chemical Biology, ha descubierto que una fuente adicional -el ácido ribonucleico (ARN)- puede generar los niveles de toxicidad necesarios para causar daños cerebrales en estas enfermedades, revelando que el ARN repetido CAG expandido puede formar agregados de ARN en el citoplasma mediante un proceso denominado separación de fases líquido-líquido y gelificación. Esto reduce la síntesis global de proteínas y provoca neurotoxicidad y neurodegeneración.
Los autores del estudio afirman que supone un avance significativo en los conocimientos de que disponen quienes trabajan para comprender la causa de estas afecciones hereditarias, puesto que el estudio supone un verdadero paso adelante en lo que se sabe sobre las causas de la enfermedad de Huntington y otras afecciones neurodegenerativas, básicamente al proporcionar nuevos conocimientos sobre los mecanismos de enfermedades como la EH y las SCA que podremos utilizar en el futuro para desarrollar formas más eficaces de tratarlas.
Referencia: Pan Y, Lu J, Feng X, Lu Sh,Yang Y, Yang G, et al. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol, 2023. https://doi.org/10.1038/s41589-023-01384-5.
https://www.nature.com/articles/s41589-023-01384-5
Fuente: (Neurología.com)- Tomado Noticias © Viguera Editores, S.L.U. 2023
ago
30
Científicos de la Universidad de Plymouth (UK) han descubierto una posible causa adicional de las mutaciones genéticas que dan lugar a afecciones raras como la enfermedad de Huntington (EH). Se sabe que estas enfermedades neurodegenerativas, entre las que también se encuentran la mayoría de las ataxias espinocerebelosas (AEC), están causadas por una expansión de las repeticiones CAG (citosina-adenina-guanina) dentro de un gen que, a su vez, da lugar a un tracto poliglutamínico (poliQ) expandido en una proteína. Anteriormente, se pensaba que el daño en estas enfermedades genéticas estaba causado únicamente por el aumento de la toxicidad de los agregados proteicos.
Sin embargo, un nuevo estudio, publicado en Nature Chemical Biology, ha descubierto que una fuente adicional -el ácido ribonucleico (ARN)- puede generar los niveles de toxicidad necesarios para causar daños cerebrales en estas enfermedades, revelando que el ARN repetido CAG expandido puede formar agregados de ARN en el citoplasma mediante un proceso denominado separación de fases líquido-líquido y gelificación. Esto reduce la síntesis global de proteínas y provoca neurotoxicidad y neurodegeneración.
Los autores del estudio afirman que supone un avance significativo en los conocimientos de que disponen quienes trabajan para comprender la causa de estas afecciones hereditarias, puesto que el estudio supone un verdadero paso adelante en lo que se sabe sobre las causas de la enfermedad de Huntington y otras afecciones neurodegenerativas, básicamente al proporcionar nuevos conocimientos sobre los mecanismos de enfermedades como la EH y las SCA que podremos utilizar en el futuro para desarrollar formas más eficaces de tratarlas.
Referencia
Pan, Y., Lu, J., Feng, X. et al. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol (2023). https://doi.org/10.1038/s41589-023-01384-5
https://www.nature.com/articles/s41589-023-01384-5
29 agosto 2023 (Neurología.com) Tomado – Noticias Neurologia © Viguera Editores, S.L.U. 2023
ago
30
Utilizando células madre de pacientes con enfermedad de Alzheimer (EA), investigadores del Brigham and Women’s Hospital (EE.UU.) han descubierto que la pérdida de la función normal del gen SORL1 conduce a una reducción de dos proteínas clave que se sabe están implicadas en la EA y que desempeñan un papel esencial en las neuronas de individuos sanos. Sus resultados, publicados en Cell Reports, sugieren una nueva estrategia potencial para el tratamiento de la EA, especialmente para pacientes que no responden a las terapias existentes.
En este nuevo estudio se utilizó un enfoque basado en células madre que examinó la variabilidad genética natural de los pacientes para comprender mejor una vía alternativa que conduce a la enfermedad. Utilizaron tecnologías CRISPR para eliminar el gen SORL1 de las células madre progenitoras, derivadas de participantes en dos cohortes de investigación del Alzheimer, el Religious Order Studies y el Rush Memory and Aging Project. Programaron las células madre para que se diferenciaran en cuatro tipos distintos de células cerebrales con el fin de examinar el impacto de la eliminación de SORL1 en cada tipo celular. El impacto más drástico se observó en las neuronas y en los astrocitos, y las neuronas que carecían de SORL1 mostraron una reducción especialmente prominente en los niveles de dos proteínas clave de la EA: APOE y CLU. Los investigadores verificaron sus resultados de laboratorio examinando la variación genética natural en la expresión de SORL1 en el tejido cerebral de 50 miembros de las cohortes, descubriendo de nuevo que una menor actividad de SORL1 en las neuronas se correlacionaba con una reducción de APOE y CLU.
Los autores aseguran que la comprensión de los subtipos de EA es relativamente nueva en el campo de la investigación neurológica, pero que puede acercar a un enfoque de neurología de precisión con el que poder predecir mejor qué pacientes pueden responder a las estrategias de tratamiento del Alzheimer que atacan genes específicos o se dirigen a los problemas que causan.
Referencia
Lee H, Aylward AJ, Pearse RV, Menon V, Yuung JE, Young Pearse TL, et al. Cell-type-specific regulation of APOE and CLU levels in human neurons by the Alzheimer’s disease risk gene SORL1. Cell Rep. 2023 Aug 18;112994. doi: 10.1016/j.celrep.2023.112994.
https://www.cell.com/cell-reports/fulltext/S2211-1247(23)01005-7
30 agosto 2023 (Neurología.com) Tomado- Noticias Neurología © Viguera Editores, S.L.U. 2023
