abr
23
Un pequeño estudio preliminar publicado hoy por la Facultad de Medicina de la Universidad de Washington en San Luis muestra una nueva y prometedora forma de prevenir la enfermedad de Alzheimer: dormir mejor.
Para el año 2050, se calcula que 13 millones de estadounidenses padecerán Alzheimer. La enfermedad empieza a afectar a la función cognitiva con la acumulación de placas amiloides en el cerebro. Los malos hábitos de sueño pueden aumentar esta acumulación de placa, pero es difícil evitar este aumento de proteínas porque la enfermedad interrumpe los ciclos de sueño. Y finalmente, una vez que hay suficiente placa, la proteína tau, que también se encuentra en el cerebro, ataca al cerebro provocando síntomas como pérdida de memoria y confusión.
Este pequeño estudio trató de romper el ciclo de falta de sueño y acumulación de proteínas ofreciendo a los participantes de entre 45 y 65 años un somnífero durante un estudio del sueño de dos noches. Estos individuos no presentaban ningún deterioro cognitivo. Este estudio sirvió como primer paso exploratorio, y en el futuro se necesitarán investigaciones más profundas.
Algunas personas recibieron 10 mg del somnífero suvorexant, otras 20 mg y otras un placebo. Los investigadores extrajeron y examinaron el líquido cefalorraquídeo cada dos horas durante 36 horas de los participantes para ver cómo cambiaban los niveles de placa y tau.
El equipo decidió administrar suvorexant en lugar de otros somníferos porque era «el primer antagonista dual de los receptores de orexina aprobado por la FDA», explica a MDLinx el autor del estudio, el doctor Brendan Lucey, profesor asociado de neurología y director del Centro de Medicina del Sueño de la Universidad de Washington.
Los resultados del estudio
Los resultados, aunque preliminares, fueron claros: los que recibieron la dosis de 20 mg del somnífero vieron descender sus niveles de amiloide entre un 10 y un 20 por ciento, y los de tau también cayeron hasta un 15 por ciento en comparación con los que recibieron un placebo. No hubo diferencias significativas en los niveles de proteína entre los individuos que recibieron 10 mg del somnífero y el grupo placebo.
«Este estudio es apasionante porque hemos demostrado que el suvorexant reduce de forma aguda la beta-amiloide y la tau fosforilada», afirma Lucey.
«Se necesitan estudios adicionales en los que los participantes reciban fármacos como suvorexant durante periodos de tiempo más largos. Dado que el suvorexant (y ahora otros antagonistas duales de los receptores de la orexina) ya está aprobado por la FDA, esperamos poder avanzar rápidamente con ensayos de fase III que prueben si esta clase de fármacos puede prevenir/retrasar la EA», prosigue.
Abril 23/2023 (MDLinx) – Tomado de Specialties & Diseases- Neurology https://www.mdlinx.com/article/an-exploratory-study-finds-sleeping-pills-may-help-ward-off-the-development-of-alzheimers/4ni8dyJ7R0prCg8Og1XDWf Copyright 2023 M3 USA Corporation.
Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator
abr
20
Nuestro cerebro está protegido por una especie de valla, un muro que evita que infecciones, tóxicos y otras amenazas lleguen al sistema nervioso central. Esta barrera hematoencefálica, sin embargo, también impide que se puedan administrar en el cerebro muchos tratamientos para enfermedades neurológicas, como el párkinson, lo que supone un escollo para la lucha contra estos trastornos.
Un equipo de investigadores españoles ha demostrado que, mediante una técnica de aplicación de ultrasonidos de baja intensidad (LIFU), es posible abrir puertas de forma temporal y focalizada en esa barrera y alcanzar dianas específicas del párkinson.
En concreto, los investigadores, liderados por José A. Obeso, del Centro Integral de Neurociencias HM CINAC, del Hospital Universitario HM Puerta del Sur (Madrid), han conseguido que un vector viral (virus adenoasociado AAV) atraviese la barrera en áreas cerebrales relacionadas con el párkinson en seis macacos utilizando la técnica LIFU. El procedimiento demostró que la técnica es segura, puede realizarse de forma no invasiva, es factible y genera expresión proteica, lo que abre la puerta a un gran potencial terapéutico, señalan los investigadores.
Los vectores virales se emplean habitualmente como transportadores de terapia génica, como una especie de taxis que permiten llevar las instrucciones necesarias para modificar las alteraciones en el ADN que es necesario cambiar en muchos trastornos. Sin embargo, hasta ahora la barrera hematoencefálica suponía una frontera para su empleo en el cerebro. La única alternativa era su inyección intracraneal, un procedimiento complejo y que engloba muchos riesgos, lo que limitaba su desarrollo.
El hecho de que LIFU sea una técnica no invasiva y segura «podría facilitar la administración focal de vectores virales para terapia génica y podría permitir intervenciones tempranas y frecuentes para tratar enfermedades neurodegenerativas», señalan los investigadores en el último número de Science Advances, donde publican sus resultados.
«Hasta ahora no se había demostrado nunca que un vector viral podía alcanzar determinadas zonas y expresarse de esta manera completamente focal. Hemos abierto realmente la posibilidad de acceder a determinadas zonas del cerebro y proporcionar un agente que pueda ser terapéutico», señala Obeso. Además de en los modelos animales, su equipo ha demostrado que la apertura de la barrera hematoencefálica es posible en tres pacientes de párkinson. En estos casos, no se llevó a cabo la administración del vector viral.
Objetivo: primeras etapas
El equipo espera iniciar un ensayo clínico el año que viene. El objetivo es conseguir tratar a los pacientes en las primeras etapas de la enfermedad, cuando la pérdida de neuronas dopaminérgicas característica del trastorno se produce en zonas muy localizadas. La posibilidad de abrir la barrera hematoencefálica de manera temporal y solo en áreas muy específicas sería clave para actuar frente a la neurodegeneración incipiente, explica el investigador. «Actuar focalmente es una ventaja cuando se actúa precozmente», subraya Obeso.
La técnica que permite atravesar la barrera hematoencefálica se basa en la combinación de dos factores. La emisión focalizada de ultrasonidos de baja intensidad en combinación con la inyección por vía intravenosa de microburbujas. Cuando estas microburbujas entran en contacto con los ultrasonidos, en esas zonas específicas donde se están aplicando, éstas aumentan su actividad y su tamaño, ganan energía y se mueven con más intensidad, lo que termina provocando una apertura en la barrera hematoencefálica. «Es como si se creara un conducto que permite atravesar la barrera de una forma focal y temporal». En humanos, la permeabilidad de la barrera se mantiene 24 o 48 horas como máximo.
Para Álvaro Sánchez Ferro, coordinador del Grupo de Estudio de Trastornos del Movimiento de la Sociedad Española de Neurología (SEN), esta estrategia es «muy interesante y disruptiva».
Por su parte, Analia Bortolozzi, científica titular en el Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), investigadora principal en el Cibersam y responsable del grupo de Neurofarmacología de Sistemas en el Idibaps-Fundació Clínic, ha señalado en declaraciones a SMC España que «a pesar de sus ventajas y posibilidades de tratamiento, LIFU tiene su parte de desafíos. Aunque una mejor penetración de la barrera hematoencefálica es una gran ayuda para la administración de fármacos, incluida la terapia génica, aumenta el riesgo de que entren en el cerebro sustancias no deseadas, como cuerpos extraños y agentes inflamatorios».
Abril 19/2023 (Diario Médico) – Tomado de Neurología https://www.diariomedico.com/medicina/neurologia/investigadores-espanoles-abren-una-puerta-en-la-barrera-hematoencefalica-para-dar-en-la-diana-contra-el-parkinson.html Copyright Junio 2018 Unidad Editorial Revistas, S.L.U.
abr
20
Investigadores de la Universidad de Michigan han descubierto que una copia extra de un gen en pacientes con síndrome de Down provoca un desarrollo inadecuado de las neuronas en ratones.
El gen en cuestión, denominado molécula de adhesión celular del síndrome de Down (DSCAM), también está implicado en otras afecciones neurológicas humanas, como los trastornos del espectro autista, el trastorno bipolar y la epilepsia intratable.
Se sabe que la causa del síndrome de Down es una copia extra del cromosoma 21, o trisomía 21. Pero como este cromosoma contiene más de un cromosoma, la trisomía 21 es la causa principal del síndrome de Down. Pero como este cromosoma contiene más de 200 genes -incluido el DSCAM-, un reto importante en la investigación y los tratamientos del síndrome de Down es determinar qué gen o genes del cromosoma contribuyen a qué síntomas específicos del síndrome.
«La vía ideal para el tratamiento sería identificar el gen que causa un trastorno médico y, a continuación, dirigirlo a ese gen o a otros genes con los que trabaja para tratar ese aspecto del síndrome de Down», afirma Bing Ye, neurocientífico del Instituto de Ciencias de la Vida de la UM y autor principal del estudio.
«Pero en el caso del síndrome de Down, no podemos limitarnos a secuenciar los genomas de los pacientes para hallar esos genes, porque encontraríamos al menos 200 genes diferentes modificados. Tenemos que profundizar para averiguar cuál de esos genes causa cada problema».
Para este trabajo, los investigadores recurren a modelos animales del síndrome de Down. Estudiando ratones que tienen una tercera copia del equivalente en ratón del cromosoma 21, Ye y su equipo han demostrado ahora cómo una copia extra de DSCAM contribuye a la disfunción neuronal. Sus hallazgos se describen en un estudio publicado el 20 de abril en PLOS Biology.
Cada neurona tiene dos conjuntos de ramas que se extienden desde el centro celular: las dendritas, que reciben señales de otras células nerviosas, y los axones, que envían señales a otras neuronas. Ye y sus colegas determinaron previamente que la sobreabundancia de la proteína codificada por DSCAM puede causar un crecimiento excesivo de los axones en las neuronas de la mosca de la fruta.
Guiados por su investigación en moscas, el equipo ha descubierto ahora que una tercera copia de DSCAM en ratones provoca un mayor crecimiento de axones y conexiones neuronales (llamadas sinapsis) en los tipos de neuronas que frenan las actividades de otras neuronas. Estos cambios provocan una mayor inhibición de otras neuronas en la corteza cerebral, una parte del cerebro que interviene en las sensaciones, la cognición y el comportamiento.
«Se sabe que estas sinapsis inhibitorias cambian en los modelos de ratón con síndrome de Down, pero se desconoce el gen que subyace a este cambio», explica Ye, que también es profesor de biología celular y del desarrollo en la Facultad de Medicina de la UM. «Aquí demostramos que la copia extra de DSCAM es la causa principal del exceso de sinapsis inhibitorias en la corteza cerebral».
El equipo demostró que en los ratones que tenían sólo dos copias de DSCAM, pero tres copias de los otros genes que son similares a los genes del cromosoma 21 humano, el crecimiento de los axones parecía normal.
«Estos resultados son sorprendentes porque, aunque estos ratones tienen una copia extra de unos cien genes, la normalización de este único gen, el DSCAM, rescata la función sináptica inhibitoria normal», afirma Paul Jenkins, profesor adjunto de farmacología y psiquiatría de la Facultad de Medicina y coautor del estudio.
«Esto sugiere que la modulación de los niveles de expresión de DSCAM podría ser una estrategia terapéutica viable para reparar los déficits sinápticos observados en el síndrome de Down». Además, dado que las alteraciones de los niveles de DSCAM se asocian a otros trastornos cerebrales como el trastorno del espectro autista y el trastorno bipolar, estos resultados arrojan luz sobre los posibles mecanismos subyacentes a otras enfermedades humanas.»
Abril 20/2023 (MedicalXpress) – Tomado de Genetics – Neuroscience https://medicalxpress.com/news/2023-04-gene-involved-syndrome-neurons-mice.html Copyright Medical Xpress 2011 – 2023 powered by Science X Network.
Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator
abr
18
Investigadores dirigidos por el doctor D. James Surmeier, catedrático Nathan Smith Davis y titular de la cátedra de Neurociencia, han descubierto circuitos neuronales hasta ahora desconocidos que contribuyen a la disfunción cerebral en la enfermedad de Huntington.
El estudio, publicado en Nature Communications, arroja luz sobre nuevos mecanismos de circuitos que podrían servir como posibles dianas terapéuticas para tratar a pacientes con Huntington.
La enfermedad de Huntington es una enfermedad neurodegenerativa hereditaria y progresiva. Entre los síntomas más comunes de la enfermedad de Huntington se encuentran los movimientos involuntarios e hipercinéticos y las alteraciones del funcionamiento conductual, emocional y cognitivo. Los síntomas de la enfermedad relacionados con el movimiento se deben a la disfunción de las neuronas del cuerpo estriado, una región subcortical del cerebro implicada en la formación de hábitos, la acción dirigida a un objetivo y el movimiento voluntario.
A nivel molecular, los pacientes con enfermedad de Huntington tienen un mayor número de repeticiones de la secuencia CAG (citosina, adenina, guanina) en el gen de la huntingtina. Aunque se sabe desde hace tiempo que la expansión CAG en la huntingtina causa la enfermedad de Huntington, aún no se ha resuelto con precisión cómo la proteína huntingtina mutante altera la función neuronal.
En el estudio actual, el equipo de Surmeier utilizó un modelo de ratón macho de Huntington y la interrogación optogenética de los circuitos estriatales para ayudar a llenar este vacío. Descubrieron que las entradas sinápticas a las principales neuronas estriatales estaban significativamente alteradas por la huntingtina mutante.
En concreto, las neuronas estriatales principales reciben información de dos tipos diferentes de neuronas corticales: una entrada de neuronas del tracto piramidal y otra de neuronas intratelencefálicas. En el modelo de ratón con Huntington, los investigadores descubrieron que la vía intratelencefálica establecía conexiones más fuertes que en los ratones normales, mientras que las del tracto piramidal eran más débiles. Esta distorsión de la información que recibían las principales neuronas estriatales se debía a un déficit en la liberación de acetilcolina por parte de las interneuronas colinérgicas estriatales, que son fundamentales para la flexibilidad conductual o el cambio de comportamiento en respuesta a determinados resultados.
«Cuando las interneuronas colinérgicas se vuelven disfuncionales, los circuitos estriatales tienen dificultades para adaptarse a nuevas circunstancias. De hecho, ésta es una de las características clave de los pacientes con enfermedad de Huntington: tienen dificultades para cambiar su comportamiento cuando cambian las contingencias», afirma Surmeier.
A continuación, los investigadores utilizaron un virus adenoasociado portador de una proteína represora de dedos de zinc para suprimir selectivamente la huntingtina mutante. Con esta técnica, los investigadores pudieron suprimir el gen mutado de la huntingtina de forma selectiva en las interneuronas colinérgicas estriatales, lo que normalizó la conectividad intratelencefálica.
«Dado que la huntingtina mutada se expresa ampliamente, el hecho de que su reducción selectiva sólo en las interneuronas colinérgicas tuviera un efecto tan profundo en la conectividad estriatal fue sorprendente. Este estudio apunta claramente al potencial valor terapéutico de las proteínas zinc finger», afirma Surmeier.
En cuanto a los próximos pasos, Surmeier dijo que su equipo está estudiando cómo afectan las interneuronas colinérgicas estriatales a otros aspectos de la circuidad estriatal y cómo podrían influir en el movimiento involuntario en pacientes con enfermedad de Huntington.
«Las neuronas estriatales que son particularmente vulnerables en la enfermedad de Huntington están implicadas en la inhibición de acciones no deseadas», dijo Surmeier. «Ahora intentamos averiguar cómo influyen las interneuronas colinérgicas en esas células y cómo intervienen en el control normal del movimiento».
(Tomado de MedicalXpress Breaking News-and-Events)
Abril 18/2023 (MDLinx) – Tomado de Especialidades y Enfermedades – Neurología. Copyright 2023 M3 USA Corporation.
abr
16
La proteína GFAP podría emplearse para identificar fases precoces de la enfermedad, si se confirman los resultados de este estudio en ‘Brain’.
Uno de los principales escollos en la investigación de la enfermedad de Alzheimer es que su inicio se produce décadas antes de que aparezcan los primeros síntomas, cuando el daño cerebral ya está instaurado, y por tanto, es difícil trabajar en estrategias que actúen en la enfermedad precoz no digamos ya en la prevención.
En los últimos años se ha desarrollado una intensa búsqueda para identificar biomarcadores no invasivos de la fase preclínica. En un trabajo recientemente publicado en Frontiers in Aging Neuroscience realizado por un equipo de Universidad Shanghai Jiao Tong, en China se ha descubierto que los niveles de ácido fórmico en la orina pueden constituir un potencial biomarcador del deterioro cognitivo en la fase inicial de Alzheimer.
La identificación de biomarcadores accesibles facilitaría la realización de ensayos sobre prevención, así como para la evaluación de opciones terapéuticas en las etapas tempranas de la enfermedad, que se estima causa entre el 60 y el 70% de todos los casos de demencia.
Una de esas líneas de investigación, llevada a cabo por un equipo del Instituto Karolinska (Suecia), se centra en la proteína glial fibrilar ácida, conocida por sus siglas en inglés GFAP, y su posible uso como biomarcador de fases muy tempranas de la enfermedad.
Hacia un diagnóstico precoz
Según los resultados apuntados en el estudio llevado a cabo por estos científicos que publica hoy la revista Brain, se observan cambios detectables en plasma de la GFAP diez años antes de que se produzcan los primeros síntomas de la enfermedad, tales como pérdida de memoria o deterioro cognitivo. “Este hallazgo sobre la GFAP mejora las posibilidades de un diagnóstico precoz”, afirma en una nota sobre el estudio una de sus investigadoras, Caroline Graff, profesora del Departamento de Neurobiología del centro sueco.
El potencial biomarcador GFAP actúa normalmente en la neuroglía, que da soporte a las neuronas. Los investigadores han comprobado que su nivel plasmático crece antes de que se puedan registrar cambios cerebrales causados por la enfermedad de Alzheimer, como la acumulación de la proteína tau.
Predisposición a la enfermedad
Para realizar la investigación, los científicos han partido de personas portadoras de una mutación genética que se vincula con una forma rara y hereditaria de la enfermedad de Alzheimer. Esta forma genética de la neuropatología representa menos del 1% de todos los casos de la enfermedad.
En el estudio analizaron 164 muestras de plasma sanguíneo de 33 portadores de la mutación y de 42 familiares sin la predisposición patogénica heredada. Los datos se recogieron entre 1994 y 2018. Participaron en la investigación el Hospital Universitario Landspitali de Islandia, la Universidad de Gotemburgo (Suecia) y el University College de Londres (Reino Unido).
Después de la variación del nivel de la proteína GFAP, el estudio detalla que registraron un aumento en las concentraciones de p-tau181 y, más tarde, del neurofilamento ligero NfL, ambas moléculas conocidas por su asociación al daño cerebral en la enfermedad de Alzheimer.
Los hallazgos sugieren, según destaca Caroline Graff, que “en el futuro podría utilizarse [la proteína GFAP] como un biomarcador no invasivo de la activación precoz de células inmunitarias como los astrocitos en el sistema nervioso central, lo que puede ser valioso para el desarrollo de nuevos fármacos y el diagnóstico de enfermedades cognitivas”.
La proteína GFAP como marcador de la enfermedad de Alzheimer en sus fases precoces ha sido objeto de diversas investigaciones.
Estudio de comparación
Recientemente, un grupo del Barcelonaβeta Brain Research Center (BBRC) de la Fundación Pasqual Maragall en colaboración con el equipo de la Universidad de Gotemburgo de esta investigación compararon en un grupo de sujetos de la cohorte Alfa+ diversos marcadores plasmáticos, entre ellos GFAP, para la fase preclínica de la enfermedad de Alzheimer. La cohorte se compone de unas 500 personas cognitivamente sanas que son descendientes de pacientes con Alzheimer.
Así comprobaron que la elevación de las proteínas p-tau231 y p-tau217 en sangre resultaba idónea para detectar los primeros signos de acumulación de amiloide en el cerebro. En concreto, niveles altos de p-tau231 en sangre predijeron mayor acumulación de proteína en el cerebro así como pérdida cognitiva en un seguimiento de tres años.
Abril 12/2023 (Diario Médico) – Tomado de Neurología, Investigación del Instituto Karolinska. Copyright Junio 2018 Unidad Editorial Revistas, S.L.U.
abr
12
Un estudio publicado en la revista Cells ha descrito alteraciones metabólicas asociadas a la enfermedad de Parkinson. En concreto, esta investigación colaborativa, liderada desde el área de Enfermedades Neurodegenerativas del CIBER (CIBERNED), la Universidad de Extremadura y la Universidad Complutense de Madrid muestras alteraciones en el metabolismo lipídico en modelos genéticos de la enfermedad, pudiendo contribuir estos hallazgos a mejorar el diagnóstico y búsqueda de nuevas dianas farmacológicas.
La enfermedad de Parkinson es un trastorno neurodegenerativo crónico de etiología todavía no bien conocida y de diagnóstico complicado hasta fases muy avanzadas de la enfermedad. La identificación de biomarcadores predictivos y/o de seguimiento de la enfermedad de Parkinson constituye constituye precisamente uno de los objetivos principales para el diagnóstico precoz de esta enfermedad. Sin embargo, la EP no solo está intrínsecamente relacionada con problemas neurológicos, sino también a una serie de alteraciones en el metabolismo periférico. El propósito de este estudio fue el de identificar cambios metabólicos en el hígado en modelos de ratón de la enfermedad de Parkinson con el alcance de encontrar nuevos biomarcadores periféricos para el diagnóstico de esta enfermedad. Para lograr este objetivo, utilizamos espectrometría de masas, tecnología para determinar el perfil metabolómico completo de muestras de tejido hepático de ratones control, tratados con 6-hidroxidopamina (tóxico que se utiliza en modelos animales para mimetizar el Parkinson idiopático) y ratones que presentan la mutación G2019S en el gen LRRK2/PARK8 (uno de los modelos genéticos más extendidos de la enfermedad).
Este análisis reveló que el metabolismo de carbohidratos, nucleótidos y nucleósidos se alteró de manera similar en el hígado de los dos modelos de enfermedad. Sin embargo, los ácidos grasos de cadena larga, la fosfatidilcolina y otros metabolitos relacionados con el perfil lipídico solo se alteraron en hepatocitos de ratones G2019S-LRRK2. En resumen, «estos resultados revelan diferencias, principalmente en el metabolismo de los lípidos, entre modelos idiopáticos y genéticos de la enfermedad de Parkinson y abre nuevas posibilidades para comprender mejor la etiología de este trastorno neurológico, así como el posible establecimiento de rubricas diagnósticas» aseguran los autores del estudio.
En concreto, esta investigación ha sido llevada a cabo por el Grupo de investigación PARK, integrado en el CIBERNED, que coordina José Manuel Fuentes del Departamento de Bioquímica y Biología Molecular y Genética de la Facultad de Enfermería y Terapia Ocupacional de la Universidad de Extremadura y por José Manuel Bravo-San Pedro del Dpto de Fisiología de la Universidad Complutense de Madrid y asimismo miembro de CIBERNED. En el trabajo también han participado los grupos liderados por Adolfo López de Munain , Ana Pérez y Jordi Pérez de CIBERNED, y el grupo de Guido Kroemer del Centre de Recherche des Cordeliers en Paris.
Abril 12/2023 (Agencia Iberoamericana para la Difusión de la Ciencia y la Tecnología) – Tomado de la selección de noticias sobre salud, España. Copyright 2023. Fundación 3CNI.
