En el proceso de fabricación de organoides, la tecnología de bioimpresión no sólo facilita la creación y el mantenimiento de formas y estructuras biológicas complejas en 3D, sino que también permite la estandarización y el control de calidad durante la producción. Y la adición de inteligencia artificial, que puede validar el potencial del producto en el proceso de fabricación, permite proporcionar una fuente de células para el organoide más estandarizada en términos de viabilidad, función, etc. En otras palabras, se espera que la bioimpresión combinada con la inteligencia artificial permita realizar diagnósticos en tiempo real de los organoides y, en última instancia, obtener modelos in vitro homogeneizados de alta calidad.

El profesor Hyungseok Lee, del Departamento de Ingeniería Mecánica y Biomédica de la Universidad Nacional de Kangwon, expuso su opinión sobre el futuro desarrollo de la fabricación de organoides el 6 de marzo en Cyborg and Bionic Systems.

Los organoides con capacidad de autoorganización y ensamblaje tienen amplias perspectivas de investigación y aplicación. Además de la simulación más básica del desarrollo de órganos humanos que no puede estudiarse en modelos animales, los organoides también pueden reproducir patologías humanas en lugar de animales para completar la investigación. Además, debido a la cómoda personalización de las fuentes celulares, los organoides también podrían utilizarse como «sustitutos» de pacientes clínicos para predecir personalmente los mejores agentes terapéuticos.

Sin embargo, un organoide tan utilizado se enfrenta a la dificultad de estandarizar su producción. Debido a las diferencias en el experimentador, las condiciones de cultivo y las condiciones celulares, el organoide, aunque permite modelizar la enfermedad, no puede mostrar propiedades estrictamente consistentes para su aplicación en el cribado de nuevos fármacos, especialmente en el proceso de cuantificación. Además, mantener todos los nutrientes, factores de crecimiento y metabolitos en equilibrio constante es un reto técnico durante el crecimiento del organoide, lo que también puede causar discrepancias con el tejido diana real.

La bioimpresión, especialmente la bioimpresión por extrusión, permite la fabricación estandarizada de componentes organoides con una composición y estructura celular compleja, controlando la calidad y minimizando la intervención humana. Además, la tecnología de bioimpresión también podría facilitar la automatización de los procesos de fabricación. La alta resolución es fundamental para la bioimpresión de organoides, con lo que se espera realizar la fabricación de organoides vascularizados con red de perfusión y superar la limitación del transporte pasivo de sustancias.

La inteligencia artificial está acaparando actualmente la atención por su capacidad para supervisar y controlar la calidad del objeto final que se explota. El proceso de bioimpresión que incorpora para crear organoides monitoriza en tiempo real el estado de las células y las estructuras impresas, proporcionando retroalimentación para una impresión fina que garantice la resolución. Este tipo de fabricación de órganos abre perspectivas de futuro para la modelización de enfermedades complejas y el ensayo combinatorio de nuevos fármacos.

Abril 15/2023 (EurekaAlert!) – Tomado de News Releases. Copyright 2023 by the American Association for the Advancement of Science (AAAS).

 

Investigadores en nanomedicina del Hospital Metodista de Houston han hallado una forma de controlar el cáncer de páncreas -uno de los más agresivos y difíciles de tratar- administrando inmunoterapia directamente en el tumor con un dispositivo más pequeño que un grano de arroz.

En un artículo publicado recientemente en Advanced Science, investigadores del Instituto Metodista de Investigación de Houston utilizaron un dispositivo nanofluídico implantable inventado por ellos para administrar anticuerpos monoclonales CD40 (mAb), un prometedor agente inmunoterapéutico, a una dosis baja sostenida a través de la semilla nanofluídica liberadora de fármacos (NDES). El resultado, observado en modelos murinos, fue la reducción de tumores a una dosis cuatro veces inferior a la del tratamiento inmunoterápico sistémico tradicional.

«Uno de los hallazgos más interesantes fue que, aunque el dispositivo NDES sólo se insertó en uno de los dos tumores del mismo modelo animal, observamos una reducción del tamaño del tumor sin el dispositivo», afirma la Dra. Corrine Ying Xuan Chua, coautora del estudio y profesora adjunta de nanomedicina en el Instituto Académico Metodista de Houston. «Esto significa que el tratamiento local con inmunoterapia fue capaz de activar la respuesta inmunitaria para atacar otros tumores. De hecho, un modelo animal permaneció libre de tumores durante los 100 días de observación continuada.»

El adenocarcinoma ductal pancreático se diagnostica con frecuencia en estadios avanzados. De hecho, alrededor del 85% de los pacientes ya presentan enfermedad metastásica en el momento del diagnóstico.

Los investigadores del Houston Methodist están estudiando una tecnología de administración nanofluídica similar en la Estación Espacial Internacional. El laboratorio de nanomedicina de Grattoni en el Metodista de Houston se centra en plataformas implantables basadas en nanofluidos para la administración controlada y a largo plazo de fármacos y el trasplante de células para tratar enfermedades crónicas.

La inmunoterapia es prometedora para tratar cánceres que antes no tenían buenas opciones terapéuticas. Sin embargo, como la inmunoterapia se administra por todo el cuerpo, provoca muchos efectos secundarios que a veces son duraderos, si no de por vida. Al concentrar la administración directamente en el tumor, se protege al organismo de la exposición a fármacos tóxicos y se reducen los efectos secundarios, lo que esencialmente permite a los pacientes sometidos a tratamiento tener una mejor calidad de vida.

«Nuestro objetivo es transformar la forma de tratar el cáncer. Consideramos que este dispositivo es un enfoque viable para penetrar en el tumor pancreático de forma mínimamente invasiva y eficaz, lo que permite una terapia más focalizada utilizando menos medicación», afirma el doctor Alessandro Grattoni, coautor del estudio y director del Departamento de Nanomedicina del Instituto Metodista de Investigación de Houston.

El dispositivo NDES consiste en un depósito de fármaco de acero inoxidable que contiene nanocanales, creando así una membrana que permite la difusión sostenida cuando se libera el fármaco.

Otras empresas de tecnología médica ofrecen implantes intratumorales liberadores de fármacos para terapias oncológicas, pero están pensados para un uso de menor duración. El dispositivo nanofluídico del Houston Methodist está pensado para una liberación controlada y sostenida a largo plazo, evitando el tratamiento sistémico repetido que suele provocar efectos secundarios adversos.

Se están llevando a cabo investigaciones de laboratorio adicionales para determinar la eficacia y seguridad de esta tecnología de administración, pero los investigadores desearían que se convirtiera en una opción viable para los pacientes con cáncer en los próximos cinco años.

Los colaboradores del Instituto Metodista de Investigación de Houston en este estudio son Hsuan-Chen Liu, Daniel Dávila González, Dixita Ishani Viswanath, Robin Shae Vander Pol, Shani Zakiya Saunders, Nicola Di Trani, Yitian Xu, Junjun Zheng y Shu-Hsia Chen.

Esta investigación recibió financiación de Golfistas contra el Cáncer y de los Institutos Nacionales de la Salud (NIH-NIGMS R01GM127558).

Abril 13/2023 (EurekAlert!) – Tomado de la sección News Release. Copyright 2023 by the American Association for the Advancement of Science (AAAS). Traducido por DeepL Traductor 2023.

Lanzamiento de un libro de Bentham Science Publishers

La nanobiotecnología es la aplicación de la nanotecnología al campo de la biología y la biotecnología. Implica el diseño, la caracterización, la producción y la aplicación de materiales, dispositivos y sistemas que funcionan a nanoescala con fines biológicos y médicos.

La nanobiotecnología es un campo multidisciplinar en el que actualmente participan investigadores de las ramas convencionales y avanzadas de la ingeniería y las ciencias naturales. Los recientes avances en nanobiotecnología han repercutido en diversos sectores socioeconómicos, como la medicina, la agricultura, la alimentación, el textil y otras industrias. Aunque la integración de los nanomateriales con la biología ha llevado al desarrollo de dispositivos de diagnóstico, agentes de contraste, herramientas analíticas, terapias y vehículos de administración de fármacos, la investigación en bionanotecnología está aún en pañales. Aún no se ha aprovechado todo el potencial de los avances en este campo. Este libro analiza diversos materiales de nanoingeniería o nanotransportadores que se utilizan en distintas situaciones. Presenta 8 capítulos que abarcan la aplicación de nanomateriales en la remediación ambiental, los nanofertilizantes, los nanobióticos contra la resistencia antimicrobiana, los nanobiosensores en la detección de patógenos y las evaluaciones de no toxicidad. Cada capítulo está estructurado en secciones de fácil lectura que explican conceptos fundamentales y aplicados de los nanomateriales.

Por ejemplo,

Administración de fármacos: Las nanopartículas pueden utilizarse como portadores para administrar fármacos a células o tejidos específicos del organismo. Por ejemplo, los liposomas, que son vesículas a nanoescala compuestas de lípidos, pueden cargarse con fármacos y dirigirse a las células cancerosas, lo que permite una administración más eficaz y selectiva de la quimioterapia.

Biosensores: Las nanopartículas pueden utilizarse para crear biosensores de alta sensibilidad para la detección de biomoléculas como proteínas, ácidos nucleicos y patógenos. Por ejemplo, las nanopartículas de oro pueden funcionalizarse con anticuerpos específicos para detectar la presencia de marcadores de enfermedades en la sangre.

Formación de imágenes: Las nanopartículas pueden utilizarse como agentes de contraste para la obtención de imágenes médicas, lo que permite visualizar tejidos o células específicos. Por ejemplo, las nanopartículas de óxido de hierro pueden utilizarse como agentes de contraste para la resonancia magnética (RM).

Los lectores obtendrán una visión actual de la aplicación biotecnológica de los nanomateriales y nanopartículas modernos. El libro está pensado para que sirva de referencia a estudiantes e investigadores en cursos de agricultura, biotecnología e ingeniería biomédica. Para más información, pulse aquí para descargar el libro: http://bit.ly/419kPfG

Abril 14/2023 (EurekAlert!) – Tomado de la Selección de Medicine and Health en español. Copyright 2023 by the American Association for the Advancement of Science (AAAS).

Ya sea al mover los dedos de los pies o al levantar las bolsas de supermercado, los músculos del cuerpo se expanden y contraen con suavidad. Algunos polímeros pueden hacer lo mismo —actuar como músculos artificiales— pero solo cuando se estimulan con voltajes peligrosamente altos. Ahora, investigadores de ACS Applied Materials & Interfaces informan de una serie de películas finas y elásticas que responden a cargas eléctricas mucho más bajas. Estos materiales representan un paso hacia músculos artificiales que algún día podrían funcionar de forma segura en dispositivos médicos.

Los músculos artificiales podrían convertirse en componentes clave de implantes robóticos blandos móviles y órganos artificiales funcionales. Los elastómeros electroactivos, como los polímeros bottlebrush, son materiales interesantes para este fin porque son blandos al principio, pero se endurecen al estirarlos. Además, pueden cambiar de forma cuando se cargan eléctricamente. Sin embargo, las películas de polímero bottlebrush disponibles actualmente solo se mueven a tensiones superiores a 4000 V, lo que supera el máximo de 50 V que la Administración de Seguridad y Salud Ocupacional de EE.UU. considera seguro. Reducir el espesor de estas películas a menos de 100 µm podría disminuir las tensiones que se requieren, pero esto aún no se ha hecho con éxito en el caso de los polímeros bottlebrush. Por eso, Dorina Opris y sus colegas querían encontrar una forma sencilla de producir películas más finas.

Los investigadores sintetizaron un conjunto de polímeros bottlebrush haciendo reaccionar macromonómeros de polidimetilsiloxano injertados con norborneno y reticulando los productos mediante luz ultravioleta. Un material de 60 µm de grosor fue el más electroactivo, con una expansión superior a la de los elastómeros anteriores y una tensión de funcionamiento de 1000 V. Y un actuador circular fabricado con ese material se expandió y contrajo más de 10 000 veces antes de degradarse. En otra serie de experimentos, los investigadores introdujeron cadenas laterales polares en los polímeros y produjeron materiales que respondían a tensiones tan bajas como 800 V. Sin embargo, no se expandían tanto como la película más electroactiva del equipo. A partir de los resultados, los investigadores afirman que, con algunos retoques, el material podría utilizarse algún día para desarrollar implantes duraderos y otros dispositivos médicos que funcionen a voltajes más seguros.

Los autores agradecen la financiación del Consejo Europeo de Investigación en el marco del programa de investigación e innovación Horizonte 2020 de la Unión Europea, la Fundación Nacional Suiza para la Ciencia, los Laboratorios Federales Suizos de Ciencia y Tecnología de Materiales y el Consejo de Becas de China.

American Chemical Society (ACS, por sus siglas en inglés) es una organización sin ánimo de lucro creada por el Congreso de los Estados Unidos. La misión de ACS es promover la química en general y a sus profesionales en beneficio tanto de nuestro planeta como de todos sus habitantes. La Sociedad es líder mundial en la promoción de la excelencia para la enseñanza de las ciencias, y el acceso a la información y la investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y el periódico semanal de noticias Chemical & Engineering News. Las revistas de ACS se encuentran entre las más citadas, fiables y leídas de la literatura científica; sin embargo, la propia ACS no realiza ninguna investigación química. Como líder en soluciones de información científica, su división de CAS colabora con innovadores de todo el mundo para acelerar los avances mediante la organización, la conexión y el análisis del conocimiento científico mundial. Las oficinas principales de ACS están en Washington D. C. y en Columbus, Ohio.

(American Chemical Society)

Abril 12/2023 (EurekAlert!) – Tomado de la Selección de Medicine and Health en español. Copyright 2023 by the American Association for the Advancement of Science (AAAS).

  • Noticias por fecha

    mayo 2024
    L M X J V S D
    « abr    
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración