sep
18
El presidente de BioCubafarma, Eduardo Martínez, ratificó la disposición de su país de incrementar su cooperación con las naciones del Sur en el campo de la ciencia en general y en particular en la biotecnología.
Esperamos que durante la Cumbre del Grupo de los 77 y China (G77) se acuerde incrementar la cooperación en el campo de la ciencia en general y específicamente en el campo de la biotecnología, el cual ha demostrado ser un cambio total en la ciencia farmacéutica para la salud de la humanidad, afirmó Martínez. ‘Cuba puede contribuir a eso y estamos en la máxima disposición de poder hacerlo’, sostuvo el presidente de BioCubafarma en conferencia de prensa a propósito de la celebración mañana y el sábado de la Cumbre del G77 en el capitalino Palacio de las Convenciones, con el tema central Retos actuales del desarrollo: Papel de la Ciencia, la Tecnología y la Innovación.
En la conferencia, denominada La industria biotecnológica y farmacéutica cubana en el desarrollo de productos innovadores de gran impacto social, Martínez disertó sobre los más recientes medicamentos elaborados por su Grupo para tratamiento de enfermedades como la diabetes y algunos tipos de cáncer, la meningitis meningocócica y el alzheimer.
Resaltó la cooperación con otras naciones en la producción de medicamentos, entre ellos Brasil, China e Irán, a los cuales Cuba ha transferido tecnología y desarrolla proyectos conjuntos. Por su parte, la vicepresidenta primera de BioCubafarma, Mayda Mauri, destacó la vocación muy humanista de Cuba y de su industria biofarmacéutica.
Cuba puede demostrar al mundo estos resultados, gracias a la relevancia que le concedió a la formación de profesionales y a priorizar recursos financieros en los momentos más difíciles que atravesaba la economía cubana, tras el derrumbe del campo socialista. Indicó que Cuba ha creado capacidades tecnológicas instaladas de primer nivel en el mundo y dominio muy fuerte de diversas plataformas tecnológicas y refirió que todo ese arsenal lo han puesto a disposición de países en vías de desarrollo.
El tema del aporte en tecnología también Cuba lo pone de manifiesto en los modelos de empresas mixtas que ha ido creando en el exterior, y ha demostrado su capacidad y voluntad de transferir conocimientos de alto valor agregado, reveló. En el Grupo de los 77 Cuba continúa su posición de compartir con el Sur todo lo que tenemos, acotó y subrayó que ‘la contribución puede ser grande, no va a ser nueva, sino será una estrategia de continuidad’.
14/09/2023
Fuente: CubaSi Tomado Noticias/Ciencia y Tecnología Copyright 2020 CubaSí. Todos los derechos reservados.
ago
31
Un trabajo del CSIC y el CNIO apunta a que la pérdida cognitiva en pacientes con metástasis cerebral responde a las interferencias que crea el cáncer en los circuitos neuronales.
Los investigadores midieron la actividad eléctrica del cerebro de ratones con y sin metástasis.
El comportamiento del cáncer en el cerebro es un misterio del que poco a poco la ciencia va desvelando piezas. Cuando un tumor crecía alojado en la cavidad de este órgano lo hacía presionando al resto de tejidos a su alrededor. Esta ocupación de espacios se asumía como principal razón para las alteraciones neurológicas que sufrían hasta un 45% de los pacientes.
Y no, no es así. Un estudio pionero realizado por investigadores españoles ha resuelto que los tumores cerebrales no presionan con su masa los tejidos, sino que sus células hackean la comunicación existente entre las neuronas. «Esto es un paso importante«, subraya Manuel Valiente, director del Grupo de Metástasis Cerebrales del Centro Nacional de Investigaciones Oncológicas (CNIO). «No habríamos conseguido pasar con éxito esta prueba de concepto sin el trabajo conjunto de dos disciplinas«, insiste haciendo alusión al trabajo del laboratorio de Liset Menéndez de la Prida, directora del Laboratorio de Circuitos Neuronales del Instituto Cajal (CSIC).
«Juntos hemos conseguido responder a preguntas clave: ¿por qué un tumor pequeño genera alteraciones grandes? ¿por qué uno mayor casi no se traduce en afectación en el paciente?», comenta Valiente. El investigador recalca que han logrado una base científica a las observaciones clínicas que venían recopilando. Este avance ha sido la portada del último número de Cancer Cell.
Se trata de que la diseminación de las células tumorales en el tejido cerebral que se traduce en metástasis provoca la alteración de la química cerebral. «Hay alteraciones bioquímicas y moleculares realizadas por el tumor y responsables de la alteración de la capacidad cognitiva de los pacientes. Estamos ante un cambio de paradigma con implicaciones en el diagnóstico y tratamiento», manifiesta Valiente.
¿Cómo han conseguido estos resultados?
Los investigadores midieron la actividad eléctrica del cerebro de ratones con y sin metástasis, y observaron que los registros electrofisiológicos de los animales con cáncer son distintos entre sí. Para asegurarse de que esa diferencia es atribuible a la metástasis recurrieron a la inteligencia artificial. Entrenaron un algoritmo automático con numerosos registros electrofisiológicos y, en efecto, el modelo logró identificar la presencia de metástasis.
- Científicos españoles abren la puerta a tratar con virus el tumor cerebral pediátrico más letal
- Inmunoviroterapia oncolítica más radiación; nueva esperanza para glioma infantil de alto grado
El sistema llegó incluso a diferenciar metástasis provenientes de tumores primarios distintos, como cáncer de piel, pulmón y mama. Estos resultados muestran que, en efecto, la metástasis influye en la actividad eléctrica cerebral de manera específica, dejando una huella muy clara y reconocible.
Menéndez de la Prida explica el método que han puesto en marcha para validar la hipótesis. «Mediante aprendizaje automático hemos sido capaces de integrar todos los datos para crear un modelo que permite saber si en un cerebro hay o no metástasis mirando únicamente su actividad eléctrica. Esta aproximación computacional podría tener la capacidad incluso de predecir subtipos de metástasis cerebral en estadios iniciales. Es un trabajo totalmente pionero, que abre un camino inexplorado».
El cambio de enfoque que aporta esta investigación hace que los laboratorios busquen profundizar sistemáticamente en el estado cognitivo de los pacientes con metástasis cerebral. «Para ello, contamos ya con 18 hospitales trabajando en red. Se trata de algo único en el mundo», explica Valiente. «Se recogen las muestras vivas de los pacientes para su estudio, que se alojan en el Biobanco del CNIO«.
El investigador añade que el siguiente paso que darán es la evaluación neurocognitiva de los pacientes. «Tendremos la oportunidad, a través de un software, de realizar una base de datos estandarizada y correlacionada, que asociará la muestra a unas capacidades. En el laboratorio vamos a poder medir, en modelos de ratón, la eficacia de los fármacos y así diseñar estrategias más tarde en la clínica asistencial». Esto será posible gracias a la tecnología METPlatform desarrollada en el CNIO para evaluar la posible actividad terapéutica cientos de compuestos a la vez sobre las muestras de tejido cerebral afectadas por la metástasis.
Pistas clave para el desarrollo de tratamientos
Más allá del registro de los cambios en la actividad eléctrica cerebral en presencia de metástasis, los investigadores también han dado los primeros pasos para determinar los cambios bioquímicos que explicarían esta alteración. Analizando los genes que se expresan en los tejidos afectados, han identificado una molécula, EGR1, con un papel potencialmente importante en el proceso. El hallazgo abre la posibilidad de diseñar un fármaco que prevenga o palíe los efectos neurocognitivos de la metástasis cerebral.
Liset Menéndez de la Prida, por su parte, avanzará en la integración del registro de la actividad cerebral con el análisis de las moléculas implicadas, «para desarrollar nuevas sondas diagnósticas de tumores cerebrales«, señala. Es una tarea en línea con el proyecto europeo NanoBright, que busca crear técnicas no invasivas para investigar el cerebro y tratar sus patologías, y en el que participan el CSIC y el CNIO.
Otro objetivo es dar con fármacos que protejan al cerebro de las interferencias creadas por el cáncer en los circuitos neuronales, utilizando las estrategias ya mencionadas. «Buscaremos las moléculas que juegan un papel en las alteraciones inducidas por la metástasis en la comunicación neuronal, y las evaluaremos como posibles dianas terapéuticas», explica Valiente.
Referencia
Sanchez-Aguilera A, Masmudi-Martín M, Navas-Olive A, Baena P, Hernández-Oliver C, Priego N, Cordón-Barris L, et al. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits. Cancer Cell 41, 2023 https://doi.org/10.1016/j.ccell.2023.07.010
https://www.sciencedirect.com/science/article/pii/S1535610823002507
30/08/2023 (Diario Médico) Tomado Medicina Oncología © junio 2018 Unidad Editorial Revistas, S.L.U.
ago
31
El Biobanco del CNIO alberga más de 43.000 muestras humanas, sin las que sería imposible diseñar tratamientos cada vez más personalizados o mejorar el diagnóstico precoz.
Con mucho cuidado, entre el humo del nitrógeno líquido, Eva Ortega saca un pequeño contenedor de un arcón congelador. El recipiente contiene células humanas, linfocitos criopreservados con mimo para que su vida quede suspendida, a la espera de que alguien las necesite. «Ahora mismo es como si estuvieran dormido», explica la investigadora. «Protegidos e inmortalizados para garantizar que cuando se descongelen sean viables para hacer cultivos en el laboratorio».
El Biobanco del Centro Nacional de Investigaciones Oncológicas (CNIO), en Madrid, alberga más de 43.000 muestras humanas que, como esas células, son fundamentales para la investigación. En las instalaciones del centro se almacenan tejidos y sustancias como tumores, uñas, sangre, orina, heces o saliva que ya están siendo fundamentales para el avance de la medicina. Aunque no lo parezca, son un verdadero tesoro biológico para la ciencia.
«Sin la información que proporcionan estas muestras sería imposible diseñar tratamientos que cada vez son más personalizados o mejorar el diagnóstico precoz de enfermedades como el cáncer», señala Ortega, directora científica del organismo, que fue pionero en la creación de una red de tumores en España.
«En investigación básica y preclínica, las muestras humanas son imprescindibles para el desarrollo de infinidad de aplicaciones. Desde biomarcadores o indicadores de pronóstico a dianas terapéuticas», continúa la investigadora. Mientras habla, muestra otro arcón congelador que alberga xenoinjertos derivados de pacientes; biopsias de tumores humanos que se implantan en ratones u otros animales para su desarrollo y posterior estudio. «Hay más de 200 modelos de todo tipo de cánceres: páncreas, colon, pulmón, ovario… Y todos ellos están en régimen de biobanco», lo que significa que están disponibles para los investigadores que las necesiten. «Los biobancos son para los tejidos lo que las bibliotecas son para los libros», subraya Ortega, a quien le gustaría que, en lugar de biobancos, estos centros se denominasen biotecas.
Custodia, ética y legalidad
La custodia de sus recursos es fundamental. Para que las muestras puedan ser útiles para la investigación, es clave «mantener altísimos niveles de calidad» tanto en la extracción y procesamiento de esos tejidos como en su posterior almacenamiento, subraya Ortega. Por eso, el xenoinjerto que acaban de sacar de un congelador en el que estaba a -80 grados va directamente a un recipiente con nieve carbónica. «No queremos que en ningún momento haya una fractura en la cadena del frío, porque, si esto sucediera, puede variar la calidad de la muestra. Si se alteran las variables preanalíticas estás cambiando la muestra antes de analizarla», explica Ortega. Y eso supone que ya no sea útil para la investigación.
«En un biobanco no se puede improvisar». Todo está estrictamente protocolarizado y estandarizado para garantizar la calidad y la seguridad de los procesos. «No hay cabida para la espontaneidad ni el azar. Seguimos procedimientos normalizados y también utilizamos una semántica común a nivel internacional».
Además de directora científica del Biobanco del CNIO, Ortega también coordina el área de biobancos de la plataforma nacional de Biobancos y Biomodelos del Instituto de Salud Carlos III y es la coordinadora científica del Nodo Nacional que representa a España en el Consorcio Europeo de Biobancos (BBMRI-ERIC), que aglutina a más de 700 biobancos.
Debido a esta interconexión, científicos de otros países y también de otros puntos del país pueden tener acceso a las muestras almacenadas en el biobanco -y también al contrario-, «siempre que cumplan los requisitos científicos y éticos exigibles por la legislación».
«El respeto a las disposiciones legales y éticas que protegen los derechos de los donantes» es, junto a la calidad de las muestras y los datos que se manejan, otro de los pilares del biobanco, subraya la científica.
Por ejemplo, se garantiza que los datos personales de quien ha donado tejido sean confidenciales, de forma que las muestras y los datos clínicos siempre se ceden de forma anónima. Del mismo modo, también se certifica que todas las muestras se usen únicamente en proyectos de investigación que hayan sido previamente aprobados por un comité científico y un comité de ética, y solo se admiten donaciones si la persona ha firmado previamente un consentimiento informado.
Los aspectos éticos son fundamentales, porque en el pasado se cometieron abusos que no se pueden repetir, señala la investigadora. «Uno de los casos más flagrantes de mal uso de muestras a nivel ético fue el caso de la línea celular HeLa», remarca.
HeLa es el acrónimo de Henrietta Lacks, una mujer afroamericana de 31 años que, en 1951, murió de cáncer de cuello de útero. Sin su consentimiento, los médicos que la atendieron en Baltimore (EEUU) tomaron una biopsia de su tumor y la compartieron con George Otto Gey, un investigador del cáncer que, enseguida y para su asombro, comprobó la enorme capacidad que tenían aquellas células para replicarse en cultivos de laboratorio. Desde entonces, estas células se han utilizado en más de 70.000 estudios y han sido claves para muchísimos avances, como los que condujeron a la vacuna de la polio. Pero también son un paradigma de mala praxis. Tras años de silencio, recientemente, la empresa ThermoFisher, que comercializó las células de Lacks sin permiso, ha accedido a compensar económicamente a sus descendientes. «Los principios éticos basados en el consentimiento de los pacientes son fundamentales y deben respetarse siempre», incide Ortega.
- Los biobancos españoles buscan cómo encajar en la estructura europea
- La gestión de biobancos precisa revisión normativa
- Así funciona el banco de cerebros más avanzado: «Los guardamos para siempre. Nunca se tiran»
La información que puede extraerse de las muestras es cada vez más extensa y variada, señala la investigadora. Por tanto, se intentan optimizar al máximo las posibilidades de conservación. Para que no se pierda nada.»Cuando existe la opción, intentamos preservar el tejido de diferentes formas», apunta María Jesús Artiga, responsable del área operativa del biobanco del CNIO. Así, por ejemplo, cuando llega un tumor al centro se intenta congelar una parte y conservar fijado en parafina el resto. «La fijación se hace inmediatamente después de que el patólogo haya hecho la valoración de qué tipo de tejido es y cuál es el diagnóstico. Esta fijación permite preservarlo, pero también se pierden propiedades y no permite el análisis de algunos aspectos, como el ARN, porque en el proceso se degrada. Sin embargo, si mantienes parte de la muestra congelada, puedes obtener esos datos que faltan. Es una manera de complementar la información que puedes obtener buscando distintos formatos de preservación», aclara Artiga.
«La información que puede extraerse de las muestras es infinita», añade Ortega, al abrir una de las salas del biobanco. «Aunque la muestra se agote, la información que se genera ya ha quedado para la comunidad científica y, en el futuro, seguirá proporcionando datos útiles para generar conocimiento», subraya.
Renacer
Una de las particularidades de este biobanco es que alberga las muestras de la Red Nacional de Metástasis Cerebral (Renacer), la primera colección de muestras vivas humanas de metástasis cerebral en todo el mundo. «Decimos que es una cohorte viva porque mantenemos la muestra como si siguiera viviendo, en unas condiciones y a una temperatura reguladas», señala la investigadora.
Renacer, creada en 2021 por el Grupo de Metástasis Cerebral y el Biobanco del CNIO, pretende crear una colección de muestras humanas para impulsar la investigación de las metástasis cerebrales, un área todavía muy desconocida.
«La metástasis cerebral aparece en hasta el 30% de los tumores primarios, principalmente en el caso de los de pulmón, mama y melanoma, sin que todavía sepamos muy bien las causas», explica Ortega. «No se conocen los mecanismos que explican por qué, en algunos casos, las células tumorales son capaces de atravesar la barrera hematoencefálica y encontrar un nicho en el cerebro. Es algo que todavía no se ha descifrado».
El objetivo del grupo es contribuir a averiguarlo. Y para ello cuentan ya con más de 150 donaciones de tejidos cerebrales y la colaboración de 20 hospitales que pronto prevén ampliar a más centros. «La red ya ha permitido poner en marcha ensayos clínicos relacionados con la eficacia de la radioterapia frente a la metástasis en el cerebro y es un modelo por el que se han interesado distintos grupos de investigación», añade.
Muestras de personas sanas
El Biobanco también alberga una colección de muestras aportada por la Asociación Española de Tripulantes de Cabina de Pasajeros. Periódicamente, esta cohorte aporta muestras de sangre, suero, saliva, orina, heces y uñas que, entre otras cuestiones, se está utilizando para estudiar los efectos del jet lag en las células del sistema inmunitario. Según explican Ortega y Artiga, el trabajo explorará si en la sangre se pueden detectar marcadores de células inmunitarias que puedan ser útiles para identificar alteraciones en el ritmo circadiano que predispongan a desarrollar enfermedades inflamatorias, como el cáncer. «El objetivo es estudiar si estas personas, que realizan a menudo vuelos de largo recorrido, en los que salen por la mañana de un país y llegan al destino cuando es de nuevo por la mañana, pueden ser más vulnerables y tener mayor incidencia de cáncer», aclara Ortega. La investigación tendrá una duración de cuatro años.
Además, esas muestras también pueden ser útiles para otro tipo de análisis. «Por ejemplo, con las muestras de saliva se pueden hacer estudios sobre microbioma o para medir los niveles de cortisol, una hormona relacionada con el estrés», señala Artiga.
Las donaciones de personas a priori sanas, sin problemas de salud declarados, como la de esa cohorte, son muy apreciadas, porque escasean. «Las personas que están sufriendo una enfermedad están muy comprometidas con la investigación y quieren colaborar en todo lo posible con los avances científicos. Pero para los estudios también son fundamentales las donaciones de personas sanas», señala Ortega, quien anima a todas las personas interesadas en donar a ponerse en contacto con el centro. De cualquier manera, la investigadora explica que existen limitaciones que hay que considerar. «Es fundamental tener en cuenta la sostenibilidad de los biobancos. No podemos almacenar muestras y muestras sin un fin claro, porque con eso lo único que conseguiríamos es provocar un consumo que no revierte en un círculo virtuoso. Todo debe estar planificado», recuerda.
Las muestras almacenadas en el centro madrileño han permitido en muchas ocasiones generar conocimiento científico. «Durante la pandemia, por ejemplo, hubo un proceso colaborativo extremo, en el que se aunaron fuerzas a distintos niveles. Nosotros aquí recogimos muestras de covid que se compartieron, bajo consentimiento informado, tanto a nivel nacional como a nivel europeo. Y de esos datos han salido artículos científicos, por ejemplo, sobre la gravedad en función de variables de género», señala.
Detrás de cada una de las decenas de miles de muestras que se conservan en el centro madrileño «hay puestas muchas esperanza», reflexiona Ortega. «A cambio de las donaciones que los pacientes dan desinteresadamente nosotros debemos darles respuestas, un conocimiento alcanzado gracias a esas muestras de sangre, tejido tumoral, orina, heces o saliva que son imprescindibles para hacer avanzar la investigación científica».
Referencia
El biobanco del Centro Nacional de Investigaciones Oncológicas. https://www.cnio.es/investigacion-e-innovacion/servicios/biobanco/
29/08/2023 (Diario Médico) Tomado- Medicina Oncología © junio 2018 Unidad Editorial Revistas, S.L.U.
ago
15
La Ciencia vuelve a desmentir el mito de los 10.000 pasos diarios: con 4.000 ya se reduce el riesgo de muerte por cualquier causa y disminuye con cada 500-1.000 pasos adicionales.
El kanji (ideograma japonés) del número 10.000 (万) parece un hombre caminando, por eso una empresa japonesa lo usó en los años 60 para lanzar al mercado un podómetro denominado Manpo-kei, algo así como ‘medidor de 10.000 pasos’. La campaña se extendió a otros países y se mantuvo esa cifra, que se convirtió en la referencia de los dispositivos que monitorizan la actividad física. Todo el mundo aceptó que esa era la cantidad ideal para mantenerse en forma y el mito ha llegado a nuestros días. Read more
abr
15
Reliquias de virus antiguos -que han pasado millones de años escondidos dentro del ADN humano- ayudan a nuestro cuerpo a combatir el cáncer, según señala un estudio llevado a cabo por investigadores del Instituto Francis Crick, en Reino Unido.
La investigación mostró que los restos latentes de estos viejos virus se despiertan cuando las células cancerosas se salen de control.
Y esto ayuda involuntariamente al sistema inmunitario a atacar el tumor.
El equipo quiere ahora aprovechar este descubrimiento para diseñar vacunas que puedan potenciar el tratamiento contra el cáncer, o incluso prevenirlo.
Células B
Los investigadores habían notado un vínculo entre una mejor supervivencia frente al cáncer de pulmón y una parte del sistema inmunológico, llamadas células B, que se agrupan alrededor de los tumores.
Las células B son la parte de nuestro cuerpo que fabrica anticuerpos y son más conocidas por su papel en la lucha contra las infecciones, como la covid.
Qué estaban haciendo exactamente en el cáncer de pulmón era un misterio, pero una serie de intrincados experimentos con muestras de pacientes y pruebas con animales demostraron que todavía estaban intentando combatir virus.
«Resultó que los anticuerpos están reconociendo restos de lo que se denomina retrovirus endógenos«, le explicó a la BBC el profesor Julian Downward, director asociado de investigación en el Instituto Francis Crick.
Los retrovirus se las ingenian para deslizar una copia de sus instrucciones genéticas dentro de las nuestras.
- Más del 8% de lo que consideramos como ADN «humano» tiene en realidad este origen viral.
- Algunos de estos retrovirus se convirtieron en parte integrante de nuestro código genético hace decenas de millones de años y los compartimos con nuestros parientes evolutivos, los grandes simios.
- Otros retrovirus pueden haber entrado en nuestro ADN hace unos miles de años.
Con el tiempo, algunas de estas instrucciones foráneas, han sido cooptadas y tienen propósitos útiles dentro de nuestras células, pero otras están estrictamente controladas para evitar que se propaguen.
Sin embargo, el caos domina dentro de una célula cancerosa cuando crece sin control y el control estricto de estos antiguos virus se pierde.
Engaño
Estas antiguas instrucciones genéticas ya no pueden resucitar virus completos, pero pueden crear fragmentos de virus que son suficientes para que el sistema inmunitario detecte una amenaza viral.
Esto «engaña al sistema inmunitario haciéndole creer que las células tumorales están infectadas y trata de eliminar el virus, por lo que es una especie de sistema de alarma», explica el profesor George Kassiotis, jefe de inmunología retroviral en el centro de investigación biomédica.
Los anticuerpos convocan a otras partes del sistema inmunitario que eliminan las células «infectadas»: el sistema inmunitario está tratando de detener un virus, pero en este caso está eliminando las células cancerosas.
Kassiotis dice que se trata de un cambio de rol notable para los retrovirus.
En su apogeo, «podrían haber estado causando cáncer en nuestros antepasados» debido a la forma en que invaden nuestro ADN, pero ahora nos protegen del cáncer, «lo cual me parece fascinante», añade.
El estudio, publicado en la revista Nature, describe cómo sucede esto naturalmente en el cuerpo, pero los investigadores quieren aumentar ese efecto mediante el desarrollo de vacunas que le enseñen al cuerpo a buscar retrovirus endógenos.
«Si podemos hacer eso, entonces no solo podemos pensar en vacunas terapéuticas, sino también en vacunas preventivas«, señala Kassiotis.
Prevención
La investigación surgió del estudio TracerX que ha estado rastreando los cánceres de pulmón con un detalle sin precedentes, y recientemente mostró la capacidad «casi infinita» de evolución del cáncer.
Esto llevó a los investigadores que hicieron el ensayo a centrar más su atención en la prevención del cáncer, ya que era muy difícil de detener.
«Todos tenemos ADN viral antiguo en nuestros genes, heredado de nuestros antepasados, y esta fascinante investigación ha destacado el papel que desempeña en el cáncer y cómo nuestro sistema inmunológico puede reconocer y destruir células cancerígenas», señaló la doctora Claire Bromley, de Cancer Research UK.
En su opinión, se necesita «más investigación» para desarrollar una vacuna contra el cáncer, pero «no obstante, este estudio se suma al creciente cuerpo de investigación que algún día podría hacer realidad este enfoque innovador para el tratamiento del cáncer».
Abril 15/2023 (BBC) – Tomado de Salud y Ciencia. Copyright 2023 BBC.
abr
14
Ya sea al mover los dedos de los pies o al levantar las bolsas de supermercado, los músculos del cuerpo se expanden y contraen con suavidad. Algunos polímeros pueden hacer lo mismo —actuar como músculos artificiales— pero solo cuando se estimulan con voltajes peligrosamente altos. Ahora, investigadores de ACS Applied Materials & Interfaces informan de una serie de películas finas y elásticas que responden a cargas eléctricas mucho más bajas. Estos materiales representan un paso hacia músculos artificiales que algún día podrían funcionar de forma segura en dispositivos médicos.
Los músculos artificiales podrían convertirse en componentes clave de implantes robóticos blandos móviles y órganos artificiales funcionales. Los elastómeros electroactivos, como los polímeros bottlebrush, son materiales interesantes para este fin porque son blandos al principio, pero se endurecen al estirarlos. Además, pueden cambiar de forma cuando se cargan eléctricamente. Sin embargo, las películas de polímero bottlebrush disponibles actualmente solo se mueven a tensiones superiores a 4000 V, lo que supera el máximo de 50 V que la Administración de Seguridad y Salud Ocupacional de EE.UU. considera seguro. Reducir el espesor de estas películas a menos de 100 µm podría disminuir las tensiones que se requieren, pero esto aún no se ha hecho con éxito en el caso de los polímeros bottlebrush. Por eso, Dorina Opris y sus colegas querían encontrar una forma sencilla de producir películas más finas.
Los investigadores sintetizaron un conjunto de polímeros bottlebrush haciendo reaccionar macromonómeros de polidimetilsiloxano injertados con norborneno y reticulando los productos mediante luz ultravioleta. Un material de 60 µm de grosor fue el más electroactivo, con una expansión superior a la de los elastómeros anteriores y una tensión de funcionamiento de 1000 V. Y un actuador circular fabricado con ese material se expandió y contrajo más de 10 000 veces antes de degradarse. En otra serie de experimentos, los investigadores introdujeron cadenas laterales polares en los polímeros y produjeron materiales que respondían a tensiones tan bajas como 800 V. Sin embargo, no se expandían tanto como la película más electroactiva del equipo. A partir de los resultados, los investigadores afirman que, con algunos retoques, el material podría utilizarse algún día para desarrollar implantes duraderos y otros dispositivos médicos que funcionen a voltajes más seguros.
Los autores agradecen la financiación del Consejo Europeo de Investigación en el marco del programa de investigación e innovación Horizonte 2020 de la Unión Europea, la Fundación Nacional Suiza para la Ciencia, los Laboratorios Federales Suizos de Ciencia y Tecnología de Materiales y el Consejo de Becas de China.
American Chemical Society (ACS, por sus siglas en inglés) es una organización sin ánimo de lucro creada por el Congreso de los Estados Unidos. La misión de ACS es promover la química en general y a sus profesionales en beneficio tanto de nuestro planeta como de todos sus habitantes. La Sociedad es líder mundial en la promoción de la excelencia para la enseñanza de las ciencias, y el acceso a la información y la investigación relacionadas con la química a través de sus múltiples soluciones de investigación, publicaciones revisadas por expertos, conferencias científicas, libros electrónicos y el periódico semanal de noticias Chemical & Engineering News. Las revistas de ACS se encuentran entre las más citadas, fiables y leídas de la literatura científica; sin embargo, la propia ACS no realiza ninguna investigación química. Como líder en soluciones de información científica, su división de CAS colabora con innovadores de todo el mundo para acelerar los avances mediante la organización, la conexión y el análisis del conocimiento científico mundial. Las oficinas principales de ACS están en Washington D. C. y en Columbus, Ohio.
(American Chemical Society)
Abril 12/2023 (EurekAlert!) – Tomado de la Selección de Medicine and Health en español. Copyright 2023 by the American Association for the Advancement of Science (AAAS).