Niño escucha1Un niño de 11 años nació con una anomalía poco frecuente en un solo gen que le provocó la sordera. Tras una cirugía en el tímpano y la inyección de un virus inofensivo, el pequeño pudo escuchar por primera vez.

La voz de su padre, el ruido de los autos al pasar y las tijeras cortándole el cabello: un niño de 11 años escucha por primera vez en su vida tras recibir una innovadora terapia génica en Estados Unidos.

El Hospital Infantil de Filadelfia (CHOP), que llevó a cabo el tratamiento, declaró el martes (23.01.2024) en un comunicado que este hito representa una esperanza para los pacientes de todo el mundo con pérdida de audición causada por mutaciones genéticas.

Pérdida de audición por gen defectuoso

Aissam Dam nació «profundamente sordo» debido a una anomalía muy poco frecuente en un solo gen.

«La terapia génica para la pérdida de audición es algo por lo que los médicos y científicos del mundo de la pérdida de audición llevamos trabajando más de 20 años, y por fin está aquí», dijo el cirujano John Germiller, director de investigación clínica de la división de otorrinolaringología del CHOP.

«Aunque la terapia génica que realizamos en nuestro paciente fue para corregir una anomalía en un gen muy poco frecuente, estos estudios pueden abrir la puerta a su uso futuro para algunos de los más de 150 genes que causan pérdida de audición infantil», continuó.

Virus inofensivo para el tratamiento

En pacientes como Aissam, un gen defectuoso impide la producción de otoferlina, una proteína necesaria para que las «células ciliadas» del oído interno puedan convertir las vibraciones sonoras en señales químicas que se envían al cerebro.

Los defectos del gen de la otoferlina son muy poco frecuentes y representan entre el 1 y el 8% de las pérdidas auditivas presentes desde el nacimiento.

Aissam se sometió el 4 de octubre de 2023 a una intervención quirúrgica en la que se le levantó parcialmente el tímpano. En la operación, se le inyectó un virus inofensivo modificado en el líquido interno de la cóclea para transportar copias funcionales del gen de la otoferlina.

Oyendo «por primera vez en su vida»

Como resultado, las células ciliadas empezaron a fabricar la proteína que les faltaba y a funcionar correctamente.

Casi cuatro meses después de recibir el tratamiento en un oído, la audición de Aissam ha mejorado hasta el punto de que solo tiene una pérdida de audición de leve a moderada y está «literalmente oyendo sonido por primera vez en su vida», señala el comunicado.

De acuerdo con el diario The New York Times, Aissam, nacido en Marruecos y quien posteriormente se trasladó a España, a pesar de poder oír, puede que nunca aprenda a hablar, ya que la ventana del cerebro para adquirir el habla se cierra en torno a los cinco años.

Referencia: Children’s Hospital of Philadelphia Performs First in U.S. Gene Therapy Procedure to Treat Genetic Hearing Loss. https://www.chop.edu/news/children-s-hospital-philadelphia-performs-first-us-gene-therapy-procedure-treat-genetic-hearing

23 enero 2024| Children’s Hospital of Philadelphia |© 2024 El Hospital Infantil de Filadelfia

alzheimer-1Los resultados publicados en Circulation Research tienen importantes implicaciones terapéuticas y preventivas para la salud cardiovascular, especialmente en la primera mitad de la vida adulta.

Investigadores del Centro Nacional de Investigaciones Cardiovasculares (CNIC), centro dependiente del Instituto de Salud Carlos III (ISCIII), organismo adscrito al Ministerio de Ciencia, Innovación y Universidades, han determinado que uno de los genes considerados como el factor de riesgo más potente para desarrollar la enfermedad de Alzheimer de inicio tardío, el gen de la apolipoproteína E4 (APOE4), también se asocia con un mayor riesgo de desarrollar aterosclerosis subclínica en la mediana edad. La investigación muestra además que, por el contrario,  las personas portadoras de la variante APOE2 están protegidas; dicha variante también se considera protectora para el desarrollo de alzhéimer.

Los resultados de este estudio, que se publican en la revista Circulation Research, y que ha sido coordinado por la Dra. Marta Cortés Canteli y el Dr. Valentín Fuster, Director General del CNIC,  arrojan luz sobre el papel de APOE en el desarrollo de enfermedades cardiovasculares, y tienen importantes implicaciones terapéuticas y preventivas para la salud cardiovascular, especialmente en la primera mitad de la vida adulta.

Se sabe que el gen APOE codifica para la apolipoproteína E que, entre otras funciones importantes, ayuda a transportar los lípidos en la sangre. El gen tiene tres alelos principales que dan lugar a distintas isoformas de esta lipoproteína: APOE2, APOE3 y APOE4. “El haber heredado uno u otro de estos alelos confiere al individuo un riesgo diferente de desarrollar distintas enfermedades, entre ellas enfermedad cardiovascular y enfermedad de Alzheimer”, explica la Dra. Cortés Canteli, neurocientífica del CNIC e investigadora Miguel Servet del Instituto de Investigación Sanitaria Fundación Jiménez Díaz.

Las personas que heredan APOE4 tienen niveles elevados de colesterol y un consecuente riesgo mayor de sufrir aterosclerosis, mientras que aquellas que tienen APOE2 presentan menos colesterol y menor prevalencia de aterosclerosis.

No obstante, los mecanismos responsables de estas asociaciones son complejos y el impacto de la edad, el sexo y otros factores de riesgo cardiovascular no estaba claro, en particular en las etapas iniciales del desarrollo de la enfermedad.

Estudio Pesa-CNIC-Santander

Lo que ahora ha hecho el equipo de investigadores del CNIC es corroborar en individuos de mediana edad del estudio PESA-CNIC-Santander (entre 40 y 54 años) que existe un mayor riesgo al desarrollo de aterosclerosis subclínica en individuos APOE4 debido a que tienen niveles elevados de LDL colesterol (o colesterol “malo”), lo que abre una ventana para implementar estrategias de intervención temprana.

Además, la investigación desvela que las personas con APOE2 presentaban menos aterosclerosis subclínica en arterias carótidas, femorales y coronarias.

Los investigadores explican que esta protección frente a la aterosclerosis se debe a que presentan niveles normales de triglicéridos, o, en el caso de las mujeres y en el grupo más joven (de 40 a 44 años de edad), a tener niveles de LDL-colesterol más bajos. “Todo esto resalta, una vez más, la importancia de mantener un estilo de vida saludable”, asegura el Dr. Fuster, también Presidente del Instituto Cardiovascular y “Physician-in-Chief“ del Mount Sinai Medical Center de Nueva York.

No obstante, en los hombres y en las personas más mayores (de 45 a 54 años), dicha protección de APOE2 parecía requerir algún mecanismo adicional. De hecho, los investigadores identificaron un enriquecimiento en rutas moleculares asociadas con procesos anti-inflamatorios y una disminución en genes implicados en procesos coagulatorios y de activación de complemento en las personas portadoras del APOE2. Ello sugiere, asegura la Dra. Raquel Toribio Fernández, co-primera autora del estudio, “que la modulación del sistema inmune presente en los individuos APOE2 podría estar contribuyendo a la protección frente aterosclerosis en los estadios más tempranos”.

Estos resultados sugieren que conocer qué isoforma de APOE está presente en cada individuo podría mejorar la estratificación del riesgo cardiovascular, “especialmente durante las etapas iniciales del desarrollo de la enfermedad cardiovascular”, destaca la Dra. Catarina Tristão Pereira, co-primera firmante del artículo.

El PESA-CNIC-Santander, dirigido por el Dr. Fuster, es un estudio prospectivo que incluye a más de 4.000 participantes asintomáticos de mediana edad en los cuales se está evaluando exhaustivamente la presencia y desarrollo de aterosclerosis subclínica desde el año 2010.

Referencia: Toribio-Fernández R, Tristão-Pereira C, Silla-Castro JC, Callejas S, Oliva B, Fernandez-Nueda I, et al. Apolipoprotein E-ε2 and Resistance to Atherosclerosis in Midlife—The PESA Observational Study. Circ Res[Internet]. 2024[citado 24 ene 2024];doi: 10.1161/CIRCRESAHA.123.323921.   https://pubmed.ncbi.nlm.nih.gov/38258600/

 

genética de la APOE, Alzheimer, desarrollo de aterosclerosis subclínica, enfermedades cardiovascular, enfermedad alzheimer, enfermedades arteria coronaria, factores de riesgo,

23 enero 2024│ Fuente: HealthDay │ Tomado de Noticias de Salud

bisexualidadLos científicos creen que la orientación sexual está influida por una combinación de factores genéticos y ambientales.

Por primera vez científicos identificaron variaciones genéticas asociadas con el comportamiento bisexual humano, y descubrieron que esas variaciones están vinculadas a la toma de riesgos y a una mayor descendencia cuando los portadores son hombres heterosexuales.

El estudio fue publicado el miércoles en Science Advances. Jianzhi «George» Zhang, profesor de la universidad de Michigan y autor principal de la nueva investigación dijo que el estudio ayuda a responder la vieja incógnita evolutiva de por qué la selección natural no eliminó la genética que sustenta la atracción por el mismo sexo.

La investigación estuvo basada en los datos de más de 450 000 personas de ascendencia europea que se inscribieron al Biobanco de Reino Unido, un proyecto genómico de largo plazo que ha demostrado ser de gran ayuda para la investigación en salud.

Parte de la base de otros estudios recientes, como un artículo publicado en 2019 en Science, según el cual las variantes genéticas influían en cierta medida en el comportamiento homosexual, aunque los factores ambientales eran más importantes.

Firmas genéticas distintas

«Nos dimos cuenta de que, en el pasado, la gente metía en el mismo saco todos los comportamientos homosexuales… pero en realidad hay un espectro», indicó Zhang.

Al combinar los datos genéticos de los participantes con sus respuestas en los cuestionarios, los autores concluyeron que las firmas genéticas asociadas a la homosexualidad y a la bisexualidad eran en realidad diferentes.

El estudio determinó que los marcadores genéticos asociados a la bisexualidad también están ligados a una mayor afinidad al riesgo en los portadores hombres, lo que probablemente favorezca más relaciones sexuales sin protección, ya que ese mismo marcador genético está asociado a un mayor número de hijos.

Los resultados «sugieren» que estos marcadores genéticos «son probablemente ventajosos para la reproducción, lo que puede explicar su persistencia en el pasado y predecir su prevalencia futura», escribieron los autores.

Ver más información: Siliang Song, Jianzhi Zhang. Genetic variants underlying human bisexual behavior are reproductively advantageous. Sci Adv[Internet].2024[citado 5 ene 2024]. DOI:10.1126/sciadv.adj6958

6 enero 2024| Fuente: DW.com| tomado de | Ciencia

enero 6, 2024 | gleidishurtado | Filed under: Ciencia, Educación Sexual, Genética, Sexología | Etiquetas: , , , , |

leucemiaLa célula leucémica corrompe la función normal de la cromatina, lo que bloquea la evolución hacia tipos celulares sanos y facilita el crecimiento tumoral, según ‘Nature Genetics’.

Un equipo internacional investigadores del CIMA Universidad de Navarra y de la Universidad de Cambridge ha descrito, por primera vez, los mecanismos de regulación genética que favorecen la evolución de la leucemia.

En este estudio multicéntrico, el más exhaustivo hasta el momento y que publicado en el último Nature Genetics, se han analizado las diferencias que existen en la generación de las células sanguíneas sanas frente a las células sanguíneas leucémicas.

En concreto, han caracterizado los mecanismos de regulación génica que utilizan las células para decidir cuándo y en qué medida un gen se activa o desactiva (expresión génica). Estudiar este proceso es muy importante ya que la regulación génica determina si la identidad que tomarán las células es de célula sana o de célula leucémica.

Usando tecnologías de última generación, los investigadores han desvelado que las células leucémicas corrompen mecanismos clave de regulación génica que determinan la identidad de las células sanas, lo cual bloquea su evolución hacia células sanas maduras y facilita el crecimiento del tumor.

Según el último informe de la Red Española de Registros de Cáncer (Redecan), en 2023 España contará con 6 411 nuevos casos de personas diagnosticadas de leucemia, el segundo cáncer de la sangre más prevalente. Así, este hallazgo abre la puerta al desarrollo de nuevos tratamientos para estos pacientes oncológicos.

Desregulación en el origen de la formación celular

La hematopoyesis comienza en las células madre hematopoyéticas, capaces de generar los distintos tipos de células sanguíneas (glóbulos blancos, glóbulos rojos y plaquetas). En concreto, es en la cromatina -la mezcla de ADN y proteínas que forman los cromosomas- donde se dan los procesos de regulación genética que dan lugar a la gran variedad de tipos celulares presentes en la sangre. En estos procesos intervienen dos grupos de proteínas llamados factores de la cromatina y factores de transcripción.

Los factores de transcripción marcan los genes específicos que se van a activar en cada tipo celular y los factores de la cromatina regulan la expresión de estos genes mediante cambios en la estructura bioquímica de la cromatina. De esta forma, se determina la identidad de las células sanguíneas. La desregulación de estos procesos desencadena distintos canceres sanguíneos, siendo la leucemia el segundo más frecuente.

Hasta el momento no estaba claro el papel que jugaban los factores de la cromatina en la determinación de la identidad celular. Sin embargo, este equipo de investigación ha demostrado que los factores de cromatina son un elemento crucial en la regulación de la identidad celular.

Para desmembrar esta función, han utilizado tecnologías de última generación de CRISPR y célula única.

A través del uso de tecnología que permite estudiar células individuales, hemos demostrado la complejidad de los procesos que regulan las células, revelando una gran diversidad en la función de factores de cromatina, así como otras funciones compartidas con los factores de transcripción», explican Julen Mendieta y Ainhoa Goñi, primeros autores de estudio e investigadores del Programa de Hemato-Oncología del CIMA, integrado en el Cancer Center Clínica Universidad de Navarra.

Diana ideal y específica

Estudiando los procesos que regulan la identidad celular en la leucemia, este equipo internacional ha revelado cómo las células leucémicas corrompen las funciones normales de los factores de cromatina para bloquear la evolución hacia tipos celulares sanos y facilitar el crecimiento tumoral.

En su análisis han observado que en esta alteración se formaron nuevos complejos de factores de transcripción y factores de cromatina exclusivos de las células leucémicas.

Según señala David Lara Astiaso, investigador del Departamento de Hematología de la Universidad de Cambridge y autor principal de estudio, como estos complejos son específicos de la leucemia y no son necesarios para la hematopoyesis normal, «son una diana ideal para una terapia que pueda desactivarlos sin causar ningún otro daño al paciente, a diferencia de tratamientos actuales como la quimioterapia, con altos niveles de toxicidad».

“Los fármacos epigenéticos están siendo muy útiles en ciertos linfomas y leucemias”

Una leucemia de ‘novo’ es un modelo de leucemogénesis

Nueva técnica para pronosticar la recaída en pacientes con leucemia mieloide aguda

Para el profesor Brian Huntly, director del Departamento de Hematología de la Universidad de Cambridge y codirector del estudio, identificar una nueva vía terapéutica potencial para la leucemia es especialmente importante. «Por ejemplo, en la leucemia mieloide aguda, que es la más común en adultos y muy agresiva, sólo el 15% de las personas diagnosticadas de esta enfermedad sobreviven más de cinco años».

En el desarrollo este estudio multicéntrico también ha colaborado investigadores la Universidad de Salzburgo (Austria) y de la compañía biotecnológica Relation Therapeutics (Reino Unido).

Varios de sus investigadores en España pertenecen al Centro de Investigación Biomédica en Red en Cáncer (CiberONC) y al Instituto de Investigación Sanitaria de Navarra (IdiSNA). El proyecto ha contado con la financiación de la Fundación Bancaria «la Caixa», de la Comisión Europea (Marie Skłodowska-Curie Actions) y del Cancer Research UK, Wellcome Trust, entre otras instituciones.

Ver más información:  Lara-Astiaso D, Goñi-Salaverri A, Mendieta-Esteban J, Narayan N, Del Valle C, Gross T, et al. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat Genet [Internet].2023[citado 10 dic 2023];55, 1542:1554. https://doi.org/10.1038/s41588-023-01471-2

11 diciembre 2023 | Fuente: Diario Médico| Tomado de | Oncología

diciembre 11, 2023 | gleidishurtado | Filed under: cáncer, Genética, Investigaciones, sangre | Etiquetas: , , , , , |

celulas embrionariasUn equipo internacional de científicos ha descubierto por primera vez cómo se organizan las células de un embrión para formar las extremidades humanas, lo que ayudará en el futuro a diagnosticar y a tratar las enfermedades congénitas asociadas a las mismas.

El hallazgo, que publica este miércoles la revista Nature, ha sido posible gracias a la aplicación de tecnologías celulares de vanguardia para crear un atlas que caracteriza el mapa celular de las extremidades humanas desde que empiezan a formarse. De este modo, los investigadores han visto cómo las extremidades se crean en una fase inicial como una especie de bolsas celulares indiferenciadas a los lados del cuerpo, sin una forma o función específicas.

Es a las ocho semanas de desarrollo cuando empiezan a estar bien diferenciadas, son anatómicamente complejas e inmediatamente reconocibles como extremidades, con dedos en las manos y en los pies. Este proceso requiere ‘una orquestación muy rápida y precisa de las células’, subraya el estudio, ya que cualquier pequeña alteración durante este proceso puede tener un efecto secundario, razón por la cual las variaciones en las extremidades se encuentran entre los síndromes más frecuentes al nacer, afectando aproximadamente a uno de cada 500 bebés en todo el mundo.

Para llegar a esta conclusión, los investigadores analizaron tejidos humanos de entre 5 y 9 semanas de desarrollo, lo que les permitió rastrear programas específicos de expresión génica, activados en determinados momentos y zonas, que dan forma a las extremidades en formación. Como parte del estudio, los investigadores demostraron que hay patrones genéticos con implicaciones en la formación de las manos y los pies, identificando ciertos genes que, cuando se alteran, se asocian a síndromes específicos de las extremidades como la braquidactilia -dedos cortos- y la polisindactilia -dedos de más o de menos-.

El equipo también pudo confirmar que muchos aspectos del desarrollo de las extremidades son comunes a humanos y ratones. En conjunto, estos hallazgos no solo proporcionan una caracterización en profundidad del desarrollo de las extremidades en humanos, sino que también aportan datos fundamentales que podrían influir en el diagnóstico y tratamiento de los síndromes congénitos de las extremidades. ‘Lo que revelamos es un proceso muy complejo y regulado con precisión. Es como ver trabajar a un escultor que va cincelando un bloque de mármol hasta revelar una obra maestra. En este caso, la naturaleza es la escultora, y el resultado es la increíble complejidad de nuestros dedos’, ha señalado uno de los autores, Hongbo Zhang, investigador de la Universidad Sun Yat-sen de Guangzhou en un comunicado.

Este estudio forma parte de la iniciativa internacional Atlas Celular Humano, cuyo objetivo es cartografiar todos los tipos celulares del cuerpo humano para transformar la comprensión de la salud y la enfermedad, y ha sido llevado a cabo por investigadores del Instituto Wellcome Sanger, el Instituto Europeo de Bioinformática (ambos en el Reino Unido), la Universidad Sun Yat-sen (China), además de colaboradores de otros centros. ‘Nuestro trabajo en el Atlas Celular Humano está profundizando nuestra comprensión de cómo se forman estructuras anatómicamente complejas, ayudándonos a descubrir los procesos genéticos y celulares que subyacen al desarrollo humano sano, con muchas implicaciones para la investigación y el tratamiento de las enfermedades’, ha señalado la autora Sarah Teichmann, doctora en el Instituto Wellcome Sanger y cofundadora del Atlas de Células Humanas.

Ver más información:  Zhang B, He P, Lawrence JEG, Wang S, Tuck E, Williams BA, et al. A human embryonic limb cell atlas resolved in space and time. Nature [Internet]. 2023[citado 7 dic 2023];. https://doi.org/10.1038/s41586-023-06806-x

8 diciembre 2023|Fuente: EFE| Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A.

genoma primateUn estudio publicado en la revista ‘Nature‘ y coliderado por el Instituto de Biología Evolutiva (IBE), un centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Pompeu Fabra (UPF), Illumina y la Facultad de Medicina de Baylor, con la colaboración Centro Nacional de Análisis Genómico (CNAG), aporta una nueva visión sobre la información genética de los primates que podría revelar datos clave sobre las partes más desconocidas del genoma humano –el genoma no codificante–, su función en la salud y su papel en nuestra evolución.

Este estudio supone una continuación del número especial de ‘Science’ publicado en junio de 2023, que reunía el mayor catálogo de información genómica de primates hasta la fecha. El genoma no codificante es aquel que no contiene información sobre las proteínas del cuerpo y, a pesar de que conforma el 99 por ciento del ADN, su función se desconoce en gran medida. Gracias al ADN secuenciado en el CNAG, el estudio ha generado y comparado los genomas de 239 especies de primates y de 202 especies de mamíferos.

El análisis ha revelado que hay cientos de miles de secuencias reguladoras no codificantes, derivadas de adaptaciones evolutivas recientes, que están conservadas exclusivamente en primates y humanos. La conservación o ausencia de cambios en los elementos genómicos a lo largo de la evolución por efecto de la selección natural es un indicativo de la importancia de su función para la supervivencia de una especie o de un orden de animales como los primates, incluidos los humanos.

Una pequeña variación en su secuencia de ADN de los cientos de miles de regiones reguladoras identificadas en este estudio podría derivar en alteraciones de los rasgos biológicos humanos, incluida la salud humana. ‘La conservación en regiones del genoma humano es una de las herramientas más poderosas que tenemos para encontrar funcionalidad en el vasto genoma humano.

Entender la funcionalidad del genoma continúa siendo uno de los retos más importantes de la genética humana’, comenta Tomàs Marqués-Bonet, investigador ICREA en el IBE y catedrático de Genética del Departamento de Medicina y Ciencias de la Vida (MELIS) de la Universidad Pompeu Fabra (UPF).

UN PASO ESENCIAL PARA EL MAPEO GENÉTICO

Comprender los efectos de las variantes genéticas humanas es crucial para el diagnóstico y tratamiento precisos de las enfermedades genéticas. Sin embargo, los efectos de las variantes genéticas en el genoma no codificante siguen siendo difíciles de predecir. En cambio, con las secuencias de ADN codificantes de proteínas, una parte del genoma mucho más estudiada, se han logrado avances recientes utilizando técnicas de aprendizaje profundo o ‘Deep Learning’.

Ahora, esta tecnología podría aplicarse a las secuencias no codificantes identificadas en el estudio. ‘Mapear los elementos de secuencia conservados en el genoma no codificante constituye un paso esencial para comprender los efectos de todas las variantes en todo el genoma y vincularlos con rasgos y resultados de enfermedades específicos’, ha expresado Lukas Kuderna, primer autor del estudio, ahora investigador en Illumina y antes en la UPF.

Hasta la fecha, los estudios de genómica comparada han tenido éxito en encontrar secuencias conservadas, en especies distantes de mamíferos. Sin embargo, las adaptaciones evolutivas recientes más cercanas al origen de la especie humana han resultado mucho más difíciles de identificar.

Esto sucede porque se encuentran en el genoma no codificante que, en comparación con el ADN codificante, evoluciona mucho más rápido. Mediante la comparación de las secuencias conservadas en especies de primates y humanos, el estudio demuestra que una fracción sustancial de los elementos reguladores no codificantes del genoma humano tienen orígenes relativamente recientes. El estudio demuestra que muchos de estos elementos reguladores no codificantes, que anteriormente se pensaba que no estaban conservados y tenían un significado biológico incierto, representan en realidad adaptaciones evolutivas recientes en humanos.

‘Estos elementos reguladores del ADN, que se han conservado a lo largo de la evolución de los primates, podrían desempeñar un papel fundamental en el desarrollo de rasgos de primates y humanos, ofreciendo nuevos conocimientos sobre los fundamentos moleculares de la biología única de nuestra propia especie’, ha finalizado Marqu¨s-Bonet.

Ver más información: Kuderna LF, Ulirsch JC, Rashid S, Ameen M, Sundaram L, Hickey G, et al. Identification of constrained sequence elements across 239 primate genomes. Nature [Internet].2023.

2 diciembre 2023 | Fuente: Europa Press | Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2019. Agencia Informativa Latinoamericana Prensa Latina S.A.

diciembre 2, 2023 | gleidishurtado | Filed under: enfermedades genéticas, Genética | Etiquetas: , , , , , |

  • Noticias por fecha

    mayo 2024
    L M X J V S D
    « abr    
     12345
    6789101112
    13141516171819
    20212223242526
    2728293031  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración