oct
5
El hallazgo de efectos genotóxicos tras la utilización de editores de bases y editores de calidad para la modificación del genoma en células madre hematopoyéticas plantea la necesidad de evaluar en mayor detalle su eficacia y seguridad para las aplicaciones clínicas.
El desarrollo de las herramientas de edición del genoma ha abierto innumerables aplicaciones, entre las que destaca su utilización terapéutica para corregir mutaciones responsables de enfermedades genéticas.
Tras los prometedores resultados en la eficacia para introducir cambios específicos en el ADN, la cuestión más importante es si las diferentes herramientas son lo suficientemente seguras como para utilizarse en la práctica clínica.
Recientemente, investigadores del Instituto Científico de San Rafael, en Italia, han encontrado que dos de las aproximaciones más novedosas, los editores de bases y editores de calidad (prime editing), pueden causar una respuesta adversa en la célula. Los resultados apuntan a que será necesario investigar en mayor profundidad la seguridad y eficiencia de ambas estrategias, así como evaluar el riesgo-beneficio de su utilización en el ámbito clínico.
Las herramientas CRISPR y su impacto en el genoma
Los editores de bases y los editores de calidad son herramientas derivadas del conocido sistema de edición genómica CRISPR. Su principal ventaja es que a diferencia del sistema CRISPR original, no necesitan cortar la doble cadena de ADN. Precisamente esta característica apuntaba a que las dos herramientas podrían ser más seguras ya que estudios previos habían encontrado que los cortes del ADN inducidos por CRISPR-Cas original activaban una respuesta que podía afectar a la integridad del genoma.
Para conocer mejor el rendimiento de los editores de bases y editores de calidad, el equipo de investigadores del Instituto Científico de San Rafael dirigido por Luigi Naldini ha realizado un análisis comparativo detallado de estas herramientas respecto al sistema CRISPR original. Concretamente, por su potencial aplicación en múltiples enfermedades, se han enfocado en un tipo de célula: las células madre progenitoras sanguíneas, para las que estudios previos ya han obtenido resultados preliminares positivos.
Los investigadores evaluaron diversos parámetros en células humanas y modelos de ratón y encontraron, como se esperaba, que la tasa de eficacia de editores de base y editores de calidad es elevada y permite generar células madre progenitoras sanguíneas que reemplacen a las células defectuosas. Dentro de los editores utilizados, el más eficiente fue el editor de bases que convierte la base adenina en timina.
Sin embargo, los resultados también indican que ambos tipos de editores inducen una respuesta de expresión en la célula que reduce la eficiencia de la edición genómica. Esta respuesta negativa reduce también la repoblación de células hematopoyéticas en trasplantes de células humanas en modelos de ratón. Además, también se generan roturas de doble cadena en el ADN y productos genéticos derivados con actividad tóxica, aunque a menor frecuencia de lo que sucede con el sistema CRISPR-Cas9. Por último, los editores de bases también aumentan la carga mutacional en los genomas de las células afectadas.
Implicaciones de los resultados
En la actualidad, los editores de bases ya han sido protagonistas de importantes avances. Por ejemplo, es destacable su reciente utilización para tratar la leucemia linfoblástica aguda de células T en pacientes que han agotado otras opciones de tratamiento, estrategia que cuenta con dos casos de éxito. En este escenario tan prometedor, conocer bien las repercusiones moleculares de estas técnicas puede contribuir a diseñar formas de optimizarlas o tomar decisiones sobre su adecuación en cada contexto clínico o enfermedad.
De momento, los resultados del trabajo indican que los editores de bases y editores de calidad reducen pero no evitan completamente que se produzcan roturas en la doble cadena del ADN en las regiones diana de la edición genómica.
Los investigadores plantean en el trabajo diferentes estrategias para minimizar los efectos negativos de las estrategias de edición genómica. Además, destacan la necesidad de realizar más investigaciones para poder trasladar la edición genómica a la práctica clínica de la manera más segura y eficiente posible.
“Los editores de bases y editores de calidad están en constante evolución, habiéndose descrito configuraciones alternativas que utilizan diferentes dominios efectores”, señala el equipo en un artículo paralelo. “Aunque las variantes emergentes podrían tener propiedades bioquímicas mejoradas o novedosas, la interacción entre diferentes rutas celulares de reparación del ADN que podrían antagonizar, fijar la edición o resolver el desajuste de base mediante un proceso propenso a errores, probablemente seguirá desafiando la precisión de la edición”.
Por último, el trabajo de Naldini y colaboradores ofrece una base sobre cómo evaluar de forma sistemática la eficacia y seguridad de las herramientas de edición genómica. Ante el continúo desarrollo de nuevas estrategias, como la reciente NICER, este tipo de evaluaciones deberá estandarizarse para comparar de forma eficiente entre técnicas.
Referencia
Fiumara M, Ferrari S, Omer-Jave, A, Beretta S, Albano L, Canarutto D, et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat Biotechnol[Internet]. 2023[citado 4 oct 2023]. https://doi.org/10.1038/s41587-023-01915-4
5 octubre 2023 | Fuente: Genotipia.com| Tomado de Genética Médica
oct
2
Un estudio del laboratorio de Desarrollo y Control del Crecimiento del IRB Barcelona arroja luz sobre el papel del daño al ADN en la invasividad de las células cancerosas.
El descubrimiento desafía la hipótesis comúnmente aceptada de que la maquinaria de muerte celular tiene acción antitumoral.
El trabajo, llevado a cabo en la mosca Drosophila, se ha publicado en la revista Current Biology.
La inestabilidad cromosómica es un fenómeno caracterizado por cambios rápidos en el número y la estructura de los cromosomas durante la división celular. Es muy frecuente en tumores sólidos y está vinculada con la propagación agresiva del cáncer, es decir, con la metástasis. La metástasis es causante del 90% de las muertes relacionadas con el cáncer y por eso es de crucial importancia conocer en detalle este proceso.
Científicos del laboratorio de Desarrollo y Control del Crecimiento del IRB Barcelona, que lidera el investigador ICREA Dr. Marco Milán, han revelado cómo el daño al ADN, provocado por la inestabilidad cromosómica, incrementa la invasividad de las células cancerosas. La investigación detalló cómo la inestabilidad cromosómica activa una vía de señalización conocida como JAK/STAT y promueve la acción de las caspasas, que provocan daño en el ADN. Este daño favorece que las células puedan escapar del tumor primario, dando lugar a la metástasis.
“Durante mucho tiempo hemos considerado a las caspasas como agentes que inducen la muerte celular en respuesta al daño al ADN. Sin embargo, nuestros hallazgos indican que también pueden desempeñar un papel proinvasivo al promover el daño al ADN. Esta investigación amplía nuestro conocimiento de la biología del cáncer, y abre camino a explorar nuevas vías terapéuticas para combatir la metástasis”, explica el Dr. Milán.
La inestabilidad cromosómica en los tumores metastáticos, tres efectos secundarios
La inestabilidad cromosómica, presente en la mayoría de los tumores sólidos, promueve la metástasis del cáncer por tres vías que se dan como efecto secundario de la propia inestabilidad cromosómica. Por una parte, la aneuploidía (o número irregular de cromosomas en una célula, que provoca estrés celular), por otra parte, la formación de micronúcleos (y el proceso inflamatorio que generan) y, por último, el daño en el ADN (causado por rotura de cromosomas).
El laboratorio que lidera el Dr. Milán en el IRB Barcelona lleva años estudiando el papel de la inestabilidad cromosómica en el cáncer y la metástasis. En estudios anteriores, publicados en 2021 y 2018, ya exploraban los efectos de la aneuploidía en este proceso. En este trabajo, describen el tercer eje de acción, la influencia del daño en el ADN en la invasividad de las células cancerosas.
Tres causas para el daño en el ADN
La inestabilidad cromosómica puede inducir daño en el ADN de tres formas diferentes: por un lado, la propia segregación irregular de los cromosomas puede provocar una rotura en la cadena de ADN. En segundo lugar, el desajuste del número de cromosomas provoca un desequilibrio en la maquinaria celular que da lugar a estrés celular en el momento de la replicación del ADN. En tercer lugar, según describen los investigadores en este trabajo, la aneuploidía también activa la vía de señalización, llamada JAK/STAT, que a su vez activa a las caspasas y causa daño en el ADN.
Las caspasas, cuando funcionan adecuadamente, promueven daño en el ADN para que la célula colapse y se desintegre. Sin embargo, los investigadores han detallado ahora cómo niveles más bajos de caspasas promueven un daño en el ADN, que confiere a las células del cáncer de capacidad para hacer metástasis.
Los primeros autores de este trabajo, quienes han llevado a cabo de la mayoría de los experimentos, son las Dras. Lara Barrio, Ana-Elena Gaspar y Mariana Muzzopappa, y el investigador predoctoral Kaustuv Ghosh. Todo el trabajo publicado en este artículo se ha llevado a cabo en el laboratorio de Desarrollo y Control del Crecimiento que lidera el Dr. Milan en el IRB Barcelona.
Este trabajo ha recibido financiación del Ministerio Español de Ciencia e Innovación, los fondos FEDER y el programa Horizon 2020 de la Unión Europea.
Referencia
Barrio L, Gaspar AE, Muzzopappa M, Ghosh K, Romao D, Clemente Ruiz M, et al. Chromosomal Instability-induced Cell Invasion through Caspase-driven DNA Damage. Current Biology [Internet]. 2022[citado 2 oct 2023]. DOI: 10.1016/j.cub.2023.09.004
2 octubre 2023 |Fuente: Genotipia| Tomado de Genética Médica
sep
13
Investigadores de la Universidad de Munich y la Universidad Técnica de Munich están desarrollando una nueva forma de inmunoterapia dirigida a activar al sistema inmunitario frente al cáncer que combina estructuras artificiales de ADN y anticuerpos.
La inmunoterapia, que consiste en la activación del sistema inmunitario frente al cáncer, es una de las aproximaciones terapéuticas con mayor proyección en la oncología clínica.
En muchas de estas terapias, el elemento central son los linfocitos T y el objetivo es dirigirlos o reprogramarlos para que eliminen las células tumorales, sin afectar al resto de células normales del organismo.
El equipo de Sebastian Kobold, de la Universidad de Munich, ha diseñado un método que induce, con alta precisión, el reclutamiento de linfocitos frente a las células tumorales. Combinando nanotecnología de ADN y anticuerpos, los investigadores han creado una plataforma con interesantes ventajas para su potencial utilización en la práctica clínica: una estructura modular, adaptable y que proporciona un alto grado de especificidad.
“Creemos que nuestros hallazgos permitirán el ensayo clínico de nanotecnologías de ADN y demostrarán el potencial de las estrategias de ingeniería biomolecular basadas en el origami de ADN para aplicaciones médicas”, concluyen los investigadores del trabajo, publicado en Nature Nanotechnology.
Cómo activar al sistema inmunitario contra el cáncer y desarrollar una inmunoterapia con origami de ADN y anticuerpos
La pieza central de la estrategia del equipo de Kobold es una nanoestructura artificial de ADN sobre la que se pueden unir de forma específica diferentes anticuerpos.
La creación de este tipo de construcciones de ADN, lo que se conoce como origami o papiroflexia de ADN, deriva de la capacidad natural de esta molécula para plegarse y formar estructuras específicas.
El equipo diseñó un chasis nanoscópico en el que se pueden acoplar diferentes anticuerpos en cuatro posiciones. En uno de los extremos se incluyeron anticuerpos que se unen de forma específica a ciertos tipos de células tumorales. En el otro extremo, los investigadores colocaron anticuerpos que se unen a los linfocitos T y activan su respuesta, como por ejemplo CD3.
Los investigadores produjeron estructuras con 105 combinaciones de anticuerpos y evaluaron cuáles de ellas eran capaces de reclutar y activar los linfocitos T hacia las células diana de interés. A estas, que funcionan en esencia como como anticuerpos biespecíficos o multiespecíficos artificiales, las denominaron “captadores programables de linfocitos T” (PTE en sus siglas en inglés).
Los investigadores han evaluado la efectividad de los PTEs tanto in vitro, en diferentes tipos de células, como in vivo, en modelos de ratón. En ambos casos, las nanoestructuras reconocen las células tumorales diana e inducen su eliminación. En cultivo, por ejemplo, los investigadores han estimado que más del 90% de las células son destruidas en 24 horas tras el tratamiento con los PTEs. In vivo, en condiciones fisiológicas, los PETs se distribuyen de forma adecuada en el organismo y reducen el crecimiento tumoral.
Aplicaciones en cáncer
Los resultados obtenidos apuntan a los PETs como interesantes herramientas para el desarrollo de inmunoterapias.
La mayor ventaja del sistema es que es posible utilizar múltiples combinaciones de anticuerpos y por tanto crear diferentes PTEs adaptados al tipo de célula diana. “Este enfoque nos permite producir todo tipo de PTEs diferentes y adaptarlas para optimizar sus efectos”, destaca Adrian Gottschlich, investigador de la Universidad de Munich y uno de los autores del estudio. “En teoría son posibles infinitas combinaciones, lo que convierte a los PTEs en una plataforma muy prometedora para tratar el cáncer”.
Además, al poder combinar múltiples anticuerpos (dirigidos a diferentes copias del mismo antígeno o a diferentes antígenos) los PTEs permiten actuar sobre las células diana con alta especificidad. Este sistema permitiría discriminar mejor entre las células tumorales y las células sanas.
En paralelo, los investigadores señalan que la activación de los linfocitos podría mejorarse utilizando combinaciones de anticuerpos dirigidos a diferentes rutas de señalización.
Referencia
Wagenbauer KF, Pham N, Gottschlich A, Kick B, Kozina V, Frank Ch, et al. Programmable multispecific DNA-origami-based T-cell engagers. Nat Nanotechnol. 2023. https://doi.org/10.1038/s41565-023-01471-7
https://www.nature.com/articles/s41565-023-01471-7
11/0/2023
(Genotipia.com) Fuente: Genética Médica-Noticias Investigación Copyright 2023 © Genotipia
ago
31
Un equipo liderado por investigadores de la Universidad de Nagoya, en Japón, ha desarrollado una nueva técnica para aislar y detectar el ADN libre proveniente de tumores cerebrales en muestras de orina. Su trabajo, publicado el pasado mes de julio en la revista Biosensors and Bioelectronics supone una importante mejora para el diagnóstico de este tipo de cáncer.
ADN tumoral orina
Una técnica basada en nanofilamentos detecta ADN procedente de tumores cerebrales en muestras de orina. Imagen: Getty Images, vía Canva.
Los tumores cerebrales son un tipo de cáncer que afecta al tejido que rodea al cerebro y al propio tejido cerebral. Por lo general, estos tumores se detectan demasiado tarde, cuando ya existen síntomas, como dolor intenso, convulsiones e incluso parálisis. Diagnosticar los tumores cerebrales de forma temprana puede mejorar significativamente la supervivencia de los pacientes, motivo por el que diferentes grupos de investigadores están trabajando en mejorar las técnicas de detección de este tipo de cáncer.
Es el caso del equipo de la Universidad de Nagoya, que, en colaboración con otros centros e instituciones japonesas, ha desarrollado un método basado en nanoestructuras para el aislamiento y la detección de ADN libre tumoral. Gracias a este sistema de detección, los investigadores han podido detectar mutaciones relacionadas con el desarrollo del glioma a partir de muestras de orina.
Nanofilamentos para detectar el ADN libre tumoral
La detección del ADN libre tumoral en biopsias líquidas (sangre, orina, etc) es una herramienta muy útil para el diagnóstico y la monitorización de diferentes tipos de tumores. En el caso de muestras de sangre, existen múltiples estrategias para detectar el ADN que las células tumorales liberan tras su muerte, algunas de ellas aprobadas por la Administración de Alimentos y Medicamentos de los Estados Unidos. Sin embargo, esto no es tan sencillo para las muestras de orina. “La falta de técnicas para aislar el ADN libre de forma eficiente en la orina es una gran limitación, ya que el ADN libre puede ser pequeño y encontrarse fragmentado y en bajas concentraciones”, explica el Dr. Takao Yasui, autor del estudio e investigador en el Departamento de Ingeniería Biomolecular de la Universidad de Nagoya.
Para solventar esta limitación, el equipo ha desarrollado un método para aislar el ADN libre tumoral en muestras de orina. La técnica está basada en la acción de unas nanoestructuras filamentosas de óxido de zinc (ZnO). Al estar formadas por este compuesto, los nanofilamentos son capaces de formar fácilmente enlaces de hidrógeno con las moléculas de ADN libre tumoral. Además, el ADN libre tumoral se puede separar fácilmente de las nanoestructuras con un lavado posterior, lo que facilita enormemente su aislamiento.
Una técnica eficaz para tipificar tumores cerebrales
Los investigadores comprobaron la eficacia del nuevo método en muestras de orina de 12 pacientes con tumores cerebrales malignos. Posteriormente, analizaron los fragmentos aislados en busca de mutaciones con utilidad para la tipificación del tumor. Los resultados demostraron que la utilización de nanofilamentos para aislar el ADN libre tumoral en muestras de orina sirve para detectar alteraciones genéticas asociadas a los diferentes tipos de tumores cerebrales.
“En experimentos previos ya mostramos que nuestros nanofilamentos pueden capturar vesículas extracelulares cancerosas, que también encontramos en este caso”, explica el Dr. Yasui. “La sorpresa fue que capturamos ADN libre tumoral utilizando un método similar”, añade.
Entre las alteraciones encontradas tras el análisis, el equipo identificó alteraciones en IDH1. Este tipo de alteraciones está estrechamente relacionado con el desarrollo de ciertos tipos de gliomas y pueden ser de utilidad de cara a determinar el subtipo tumoral. “Esto es emocionante, porque es la primera vez que se detectan mutaciones en IDH1 a partir de una muestra de orina tan pequeña como 0,5 ml” explica el Dr. Yasui.
El reciente estudio supone una importante mejora en los métodos de detección y aislamiento del ADN libre tumoral, a la vez que provee de nuevas herramientas para el diagnóstico y la clasificación de los tumores cerebrales. “Aunque nosotros hemos probado con gliomas, este método abre nuevas posibilidades para la detección de mutaciones tumorales. Si conocemos el tipo de mutación que debemos buscar, podemos aplicar fácilmente nuestra técnica para detectar otros tipos de tumores, especialmente la detección de aquellos que no pueden ser aislados por métodos convencionales”, explica el Dr. Takao Yasui.
Artículo original: Takahashi H, et al. Mutation detection of urinary cell-free DNA via catch-and-release isolation on nanowires for liquid biopsy. Biosens Bioelectron. 2023 Aug 15;234:115318. doi: http://dx.doi.org/10.1016/j.bios.2023.115318
Fuente: Urine tests identify brain tumors by capturing cancer DNA using nanowires. Nagoya University. https://www.nagoya-u.ac.jp/researchinfo/result-en/2023/07/20130612-01.html
Genotipia Tomado – Genética Médica News Copyright 2023 © Genotipia
ago
24
Investigadores de la Universidad de Berlín han identificado un marcador epigenético en el gen POMC relacionado con el riesgo elevado a tener sobrepeso en mujeres que abre una posibilidad terapéutica para algunos pacientes con obesidad. Read more
ago
11
Investigadores españoles del grupo de Epigenética del Cáncer y Nanomedicina, el cual se encuentra en el Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) y vinculado al CINN-CSIC, IUOPA y el CIBERER, han llevado a cabo un estudio, publicado por Molecular Oncology, en el que se identifican distintas proteínas cuyo papel podría ser fundamental en el avance del glioblastoma multiforme, en concreto, en el agresivo subtipo mesenquimal.
Los autores recuerdan que recientemente, se han comenzado a aplicar tecnologías ómicas que permiten estudiar desde una perspectiva global y con un alto grado de detalle las diferencias intrínsecas existentes entre pacientes que tienen el mismo tipo de tumor, lo que en el caso del glioblastoma ha permitido diagnosticar a pacientes en distintos subtipos, proneural, mesenquimal y clásico, los cuales exhiben un distinto comportamiento y agresividad en su avance. Así, por medio de este estudio se ha buscado realizar un enfoque integrativo, donde investigar las diferencias que existen entre los distintos subtipos tumorales analizando las distintas capas de complejidad de la información celular, como son los patrones de metilación del ADN y de expresión génica. Este enfoque ha permitido encontrar cómo distintas proteínas parecen tener un papel importante en el desarrollo del subtipo mesenquimal, por lo que podrían ser utilizadas como dianas terapéuticas en tratamientos personalizados.
En concreto, mediante el estudio de la metilación del ADN, los investigadores buscan «huellas» o «trazos» entre los distintos subtipos que les permitan identificar qué proteínas puedan estar activando rutas de señalización indispensables para el crecimiento tumoral. La metodología utilizada en este estudio puede ser aplicada a distintas enfermedades de las cuales no se conozca su etiología o cómo se encuentran dirigidas. De este modo, esto abre la puerta para estudiar en más detalle no sólo la segregación de los tumores en distintos subtipos, mejorando así el manejo de la enfermedad, sino la búsqueda de potenciales dianas terapéuticas que permita diseñar un tratamiento más eficaz.
Referencia
Santamarina-Ojeda P, Tejedor JR, Pérez RF, et al. Mol Oncol. 2023 Jun 26. doi: 10.1002/1878-0261.13479.
