Imagen: Wikimedia Commons.El veneno del diminuto falso escorpión (Chelifer cancroides) contiene moléculas con un fuerte efecto contra los llamados gérmenes de hospital y puede ayudar a combatir enfermedades infecciosas.

De tan solo unos milímetros de longitud, es el miembro más conocido de los pseudoescorpiones, un orden de arácnidos, en Europa Central. Son depredadores de ácaros y chinches. A veces aparecen entre los libros viejos o entre montones de papeles polvorientos, razón por la que se les conoce también como escorpiones de los libros. En estas condiciones resulta ser un buen aliado, pues se alimenta principalmente de los llamados piojos de los libros.

A pesar de que representan un grupo diverso de arácnidos con alrededor de 3 000 especies en todo el mundo, los pseudoescorpiones, a diferencia de los escorpiones, son poco conocidos y apenas se han investigado como animales venenosos. Se parecen a sus parientes de mayor tamaño con sus garras largas en comparación con sus cuerpos, aunque su abdomen no está dividido ni tiene un aguijón venenoso.

Sin embargo, su pequeño tamaño, de entre 1 y 7 milímetros, dificulta el análisis de su veneno, que inyectan en sus presas a través de las glándulas venenosas de sus garras.

Un equipo de investigadores del Centro LOEWE de Genómica Traslacional de la Biodiversidad (LOEWE-TBG) y otras instituciones ha conseguido por primera vez reproducir artificialmente todos los miembros conocidos de una familia de toxinas del escorpión de los libros (Chelifer cancroides) e investigar su actividad.

Los científicos descubrieron una actividad sorprendentemente fuerte contra un conocido germen hospitalario llamado Staphylococcus aureus resistente a la meticilina (MRSA). Los estafilococos son bacterias comunes que colonizan la piel y las membranas mucosas.

Lo que hace especiales a las variantes de MRSA es que son resistentes al antibiótico meticilina y, por lo tanto, causan infecciones difíciles de tratar en humanos, incluso después de una cirugía.

La familia de toxinas analizadas se había descubierto recientemente en un estudio previo que descifró el cóctel de veneno del escorpión de los libros y se denominó «checacinas». Para averiguar de forma rápida y eficaz el modo de acción de esta clase de toxinas hasta ahora desconocida, diferentes grupos de trabajo del Centro LOEWE TBG probaron en paralelo la actividad de las toxinas contra la formación de tumores, las bacterias y la inflamación.

El estudio se ha publicado en la revista iScience.

Sin embargo, antes de que sea posible una aplicación farmacológica, hay que superar otros obstáculos. «Nuestros datos muestran que las checacinas también tienen, por desgracia, cierta toxicidad para las células humanas y podrían provocar reacciones inflamatorias por sí mismas.

«Por ello, todavía tenemos que optimizar su estructura y, por tanto, su efecto mediante procesos biotecnológicos, como ocurre con otras sustancias activas», explica el coautor principal del estudio, el Dr. Pelin Erkoc, científico de TBG que trabajó en el Instituto de Biología Farmacéutica de la Universidad Goethe de Frankfurt durante los análisis.

«Sin embargo, el potencial de estos compuestos ya está claro. Se prevé que las infecciones resistentes a los antibióticos podrían convertirse en la principal causa de muerte relacionada con enfermedades en todo el mundo en las próximas décadas. «Por eso es importante buscar nuevas soluciones con ideas inusuales», añade el Dr. Michael Marner, investigador postdoctoral en el Fraunhofer IME-BR y coautor del estudio.

«Los venenos animales son un verdadero tesoro de posibles candidatos a fármacos, pero hasta ahora solo se han investigado una pequeña parte», subraya el líder del estudio, el Dr. Tim Lüddecke, jefe del grupo de investigación junior Animal Venómica en el Fraunhofer IME-BR y la Universidad Justus Liebig de Giessen y miembro del Centro LOEWE TBG.

07 agosto 2024|Fuente: Europa Press |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 9, 2024 | Carlos Alberto Santamaría González | Filed under: Bioquímica, Farmacología, Microbiología | Etiquetas: , , , |

Imagen: Cubasi.La falta de ejercicio entre los adultos y sobre todo en los adolescentes es un problema de salud global, pero es que a la hora de hacer ejercicio surgen innumerables tentaciones que tratan de impedirlo. Pero ¿cómo decide nuestro cerebro si hacer ejercicio o no?

Un experimento hecho con ratones ha develado que la decisión está mediada por una sustancia química cerebral llamada orexina y por las neuronas que la producen, un hallazgo que si se traslada a los humanos podría ayudar a desarrollar estrategias para fomentar la actividad física en las personas.

Los resultados del experimento, realizado por investigadores de la ETH de Zúrich (Suiza), son importantes porque, según la Organización Mundial de la Salud, el 80 % de los adolescentes y el 27 % de los adultos no hace suficiente ejercicio, mientras la obesidad crece a un ritmo alarmante en la población.

«A pesar de estos datos, muchas personas consiguen resistirse a las tentaciones constantemente presentes y hacer suficiente ejercicio», afirma Denis Burdakov, catedrático de Neurociencia de la ETH de Zúrich.

Orexina, un mensajero químico

La orexina es una de las más de cien sustancias mensajeras activas en el cerebro, como la serotonina o la dopamina, pero fue descubierta relativamente tarde, hace unos 25 años. Los científicos están aclarando ahora sus funciones.

La dopamina es una sustancia clave para la motivación personal. «Nuestro cerebro libera dopamina tanto cuando comemos como cuando hacemos ejercicio, pero no explica por qué elegimos una cosa en lugar de la otra», dice Burdakov.

Para averiguarlo, el equipo ideó un experimento en el que los ratones podían elegir libremente entre ocho opciones diferentes en pruebas de diez minutos.

Entre ellas había una rueda en la que podían correr y una «barra de batidos» en la que podían disfrutar de un batido estándar con sabor a fresa.

En el experimento, utilizaron dos grupos de ratones: uno con ratones normales y otro a los que se les había bloqueado el sistema de orexina.

Los ratones con un sistema de orexina intacto pasaron el doble de tiempo en la rueda de correr y la mitad en la barra de batidos que los ratones cuyo sistema de orexina había sido bloqueado.

El comportamiento de los dos grupos no difirió en los experimentos en los que los científicos sólo ofrecieron a los ratones la rueda de correr o el batido. «Esto significa que la función principal del sistema de la orexina no es controlar cuánto se mueven los ratones o cuánto comen», afirma Burdakov.

«Más bien, parece fundamental para tomar la decisión entre una y otra, cuando ambas opciones están disponibles». Sin orexina, la decisión se decantaba claramente por el batido, y los ratones renunciaban a hacer ejercicio en favor de comer, aclara el estudio.

Los investigadores de la ETH de Zúrich esperan verificar estos resultados en humanos, dado que las funciones cerebrales implicadas son prácticamente las mismas en ambas especies.

«Si comprendemos cómo arbitra el cerebro entre el consumo de alimentos y la actividad física, podremos desarrollar estrategias más eficaces para hacer frente a la epidemia mundial de obesidad y los trastornos metabólicos relacionados», afirma Daria Peleg-Raibstein, investigadora en la ETH de Zúrich y coautora del estudio.

06 agosto 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 7, 2024 | Carlos Alberto Santamaría González | Filed under: Bioquímica | Etiquetas: , , , |

Imagen: Cubasi.Un equipo científico ha desarrollado un nuevo material bioactivo que regenera con éxito el cartílago en las articulaciones de la rodilla de un modelo animal de gran tamaño, una oveja.

Aunque parece una sustancia gomosa, el biomaterial es en realidad una compleja red de componentes moleculares que actúan conjuntamente para imitar el entorno natural del cartílago en el organismo.

Los detalles se publican en la revista PNAS, en un artículo liderado por investigadores de las universidades Northwestern y Wisconsin-Madison, Estados Unidos.

Los científicos, en sus experimentos, aplicaron el material al cartílago dañado de las rodillas de los animales y en solo seis meses observaron indicios de reparación mejorada, incluido el crecimiento de nuevo cartílago que contenía biopolímeros naturales (colágeno tipo II y proteoglicanos), que permiten una resistencia mecánica sin dolor en las articulaciones.

Estos afirman que, con más trabajo, el nuevo material podría utilizarse algún día para evitar las operaciones de prótesis completas de rodilla, tratar enfermedades degenerativas como la artrosis y reparar lesiones deportivas como la rotura del ligamento cruzado anterior.

El cartílago es un componente esencial de las articulaciones y cuando se daña o se rompe con el tiempo puede tener un gran impacto en la salud general y la movilidad de las personas, explica Samuel I. Stupp, de Northwestern.

El problema es que, en humanos adultos, este no tiene una capacidad inherente para curarse. «Nuestra nueva terapia puede inducir la reparación en un tejido que no se regenera de forma natural», afirma.

El nuevo biomaterial consta de dos componentes: un péptido bioactivo que se une al factor de crecimiento transformante beta-1 (TGFb-1) -una proteína esencial para el crecimiento y mantenimiento del cartílago- y ácido hialurónico modificado, un polisacárido natural presente en el cartílago y en el líquido sinovial lubricante de las articulaciones.

El equipo integró el péptido bioactivo y partículas de ácido hialurónico modificadas químicamente para impulsar la autoorganización de fibras a nanoescala en haces que imitan la arquitectura natural del cartílago.

El objetivo, crear un andamio ‘atractivo’ para que las células del propio organismo regeneren el tejido cartilaginoso (mediante señales en las fibras a nanoescala, el material estimula la reparación del cartílago por las células que pueblan el andamio).

Para evaluar la eficacia del material, los investigadores lo probaron en ovejas con defectos cartilaginosos en la articulación de la rodilla, una unión compleja de las extremidades posteriores similar a la rodilla humana y que es increíblemente difícil de regenerar.

Este trabajo se llevó a cabo en el laboratorio de Mark Markel, de la Facultad de Veterinaria de la Universidad de Wisconsin-Madison.

El equipo inyectó el material espeso y pastoso en defectos del cartílago, donde se transformó en una matriz gomosa. No solo crecía nuevo cartílago para rellenar el defecto a medida que se degradaba, sino que el tejido reparado era sistemáticamente de mayor calidad que el de control, aseguran los científicos.

El tratamiento estándar actual es la cirugía de microfracturas y su principal problema es que suele dar lugar a la formación de fibrocartílago -el mismo que hay en las orejas- en lugar de cartílago hialino, el necesario para tener articulaciones funcionales, dice Stupp.

«Al regenerar el cartílago hialino, nuestro método debería ser más resistente al desgaste, solucionando el problema de la escasa movilidad y el dolor articular a largo plazo y evitando también la necesidad de reconstruir las articulaciones con grandes piezas», concluye.

05 agosto 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 7, 2024 | Carlos Alberto Santamaría González | Filed under: Bioingeniería, Bioquímica, Ortopedia y traumatología, Reumatología | Etiquetas: , , |

Imagen: Archivo.Las proteínas de la sangre tienen capacidad para predecir la aparición de más de 60 enfermedades diversas, según apunta una nueva investigación publicada en Nature Medicine y realizada como parte de una asociación de investigación internacional entre GSK, la Universidad Queen Mary de Londres, el University College de Londres, la Universidad de Cambridge y el Instituto de Salud de Berlín en la Charité Universitätsmedizin (Alemania).

Los investigadores utilizaron datos del Proyecto de Proteómica Farmacéutica del Biobanco del Reino Unido (UK Biobank Pharma Proteomics Project, UKB-PPP), el mayor estudio de proteómica realizado hasta la fecha, con mediciones de aproximadamente 3 000 proteínas plasmáticas de un conjunto seleccionado al azar de más de 40 000 participantes del Biobanco del Reino Unido.

Los datos de las proteínas están vinculados a los registros médicos electrónicos de los participantes. Los autores utilizaron técnicas analíticas avanzadas para identificar, para cada enfermedad, una ‘firma’ de entre 5 y 20 proteínas más importantes para la predicción.

Los investigadores informan sobre la capacidad de ‘firmas’ de proteínas para predecir la aparición de 67 enfermedades, entre ellas el mieloma múltiple, el linfoma no Hodgkin, la enfermedad de la neurona motora, la fibrosis pulmonar y la miocardiopatía dilatada.

Los modelos de predicción de proteínas obtuvieron mejores resultados que los modelos basados en información clínica estándar registrada. La predicción basada en recuentos de células sanguíneas, colesterol, función renal y pruebas de diabetes (hemoglobina glucosilada) tuvo un rendimiento inferior al de los modelos de predicción de proteínas en la mayoría de los ejemplos.

Los beneficios que aporta a los pacientes la medición y el análisis del riesgo de sufrir un ataque cardíaco o un accidente cerebrovascular en el futuro (puntuaciones de riesgo cardiovascular) están bien establecidos. Esta investigación abre nuevas posibilidades de predicción para una amplia gama de enfermedades, incluidas las más raras. Muchas de ellas pueden tardar meses y años en diagnosticarse, y esta investigación ofrece oportunidades totalmente nuevas para realizar diagnósticos oportunos.

Estos hallazgos requieren validación en diferentes poblaciones, incluidas personas con y sin síntomas y signos de enfermedades y en diferentes grupos étnicos.

«Estamos muy entusiasmados con la oportunidad de identificar nuevos marcadores para la detección y el diagnóstico a partir de las miles de proteínas que circulan y que ahora se pueden medir en la sangre humana. Lo que necesitamos con urgencia son estudios proteómicos de diferentes poblaciones para validar nuestros hallazgos y pruebas efectivas que puedan medir las proteínas relevantes para la enfermedad según los estándares clínicos con métodos asequibles», señala la autora principal y directora del Instituto de Investigación Universitaria de Atención Sanitaria de Precisión (PHURI) de la Universidad Queen Mary de Londres, Claudia Langenberg.

Por su parte, la estudiante de investigación en GSK y la Universidad de Cambridge en ese momento y ahora investigadora postdoctoral en PHURI, la doctora Julia Carrasco Zanini Sánchez, apunta que «varias de las firmas proteicas tuvieron un rendimiento similar o incluso mejor que el de las proteínas que ya se habían probado por su potencial como pruebas de detección, como el antígeno prostático específico para el cáncer de próstata».

«Por lo tanto, estamos muy entusiasmados con las oportunidades que nuestras firmas proteicas pueden tener para la detección temprana y, en última instancia, para mejorar el pronóstico de muchas enfermedades, incluidas enfermedades graves como el mieloma múltiple y la fibrosis pulmonar idiopática. Identificamos tantos ejemplos prometedores que el siguiente paso es seleccionar enfermedades de alta prioridad y evaluar su predicción proteómica en un entorno clínico», añade.

El coautor principal, el vicepresidente y director de Genética y Genómica Humana de GSK, el doctor Robert Scott, apunta que «un desafío clave en el desarrollo de fármacos es la identificación de los pacientes con más probabilidades de beneficiarse de los nuevos medicamentos» y que «este trabajo demuestra lo prometedor que es el uso de tecnologías proteómicas a gran escala para identificar a individuos con alto riesgo en una amplia gama de enfermedades, y se alinea con su enfoque de utilizar la tecnología para profundizar la comprensión de la biología y las enfermedades humanas».

05 agosto 2024|Fuente: Europa Press |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 7, 2024 | Carlos Alberto Santamaría González | Filed under: Bioquímica, Biotecnología | Etiquetas: , , , |

Imagen: EFE / InfobaeInvestigadores de la Universitat Politècnica de València (UPV), en el este de España, el CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) y la Universidad de Edimburgo desarrollan nuevas cajas moleculares para mejorar la efectividad y reducir la toxicidad de fármacos anticancerígenos.

El equipo investigador acaba de publicar en la revista Chemical Science, que ha seleccionado además el proyecto para una de sus portadas interiores, una estrategia basada en el uso de sistemas moleculares para la encapsulación y liberación de fármacos con posibles aplicaciones en futuras terapias contra el cáncer.

En su estudio encapsularon un fármaco anticancerígeno en una caja molecular que responde a cambios de pH y comprobaron su eficacia contra células cancerígenas, según informó la UPV en un comunicado.

Las cajas moleculares son estructuras que envuelven completamente las moléculas huésped, encapsulando en este caso un fármaco y dejándolo en un estado inactivo para su posterior liberación recuperando la actividad.

El estudio, que se ha desarrollado como parte del proyecto de tesis doctoral de Giovanni Montà, ha permitido iniciar la línea de investigación en cajas moleculares para aplicaciones biológicas.

«En nuestra investigación, evaluada en pruebas in vitro en células, hemos realizado un análisis comparativo entre dos cajas análogas: una caja metalo-orgánica y otra caja orgánica, explicó Giovani Montà, que añadió: «Se trata de un estudio único, de gran relevancia para poder avanzar qué tipo de caja es mejor para aplicaciones biológicas y, en este caso concreto, para luchar contra esas células cancerígenas».

En su estudio, el equipo del IDM-UPV y el CIBER-BBN, en colaboración con Paul Lusby de la Universidad de Edimburgo, ha comprobado que la caja molecular orgánica tiene mejores propiedades que la caja metalo-orgánica, y permite administrar mejor el fármaco debido a su ausencia de toxicidad.

Vicente Martí, investigador del IDM-UPV y del CIBER-BBN, explicó que la caja orgánica destaca por su alta compatibilidad celular, ya que no muestra ninguna toxicidad celular incluso en dosis altas, a diferencia de las cajas metalo-orgánicas, en las que sí observaron toxicidad.

«Además, la caja orgánica administra el fármaco anticancerígeno doxorrubicina de forma eficaz a las células, preservando la actividad citotóxica de este fármaco anticancerígeno», apuntó David Bastante, investigador predoctoral en el IDM-UPV.

De esta forma, según Alba García, investigadora CIBER-BBN, este estudio establece unas bases para futuros desarrollos de sistemas de liberación de fármacos basados en cajas moleculares, aplicados al tratamiento de enfermedades como el cáncer.

Tras los buenos resultados del sistema desarrollado en sus laboratorios, el equipo del IDM, CIBER-BBN sigue trabajando en la mejora de sus propiedades.

«Nuestro objetivo es obtener un sistema que nos permita avanzar en aplicaciones biológicas, y poder realizar ensayos in vivo», concluyó Ramón Martínez-Máñez, director del Instituto IDM en la UPV e investigador también del CIBER-BBN.

05 agosto 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 6, 2024 | Carlos Alberto Santamaría González | Filed under: Bioquímica, Biotecnología, Farmacología, Oncología | Etiquetas: , |

Imagen: Archivo.Una investigación ha logrado resolver, gracias a técnicas de vanguardia, cómo el organismo es capaz de identificar los daños en el ADN causados por la luz solar, el alcohol y la contaminación para poder luego repararlos, un hallazgo que puede abrir la puerta a mejorar los tratamientos contra el cáncer.

El trabajo publicado en Nature descifra un «misterio de décadas», según sus responsables del Laboratorio de Ciencias Médicas de Londres y del Laboratorio de Biología Molecular de Cambridge, que han desvelado el mecanismo básico por el que uno de los sistemas de reparación del ADN más vitales reconoce los daños e inicia su restauración.

El ADN, el manual de instrucciones de todas las tareas que las células deben realizar, se daña constantemente a lo largo de la vida por factores ambientales como la luz ultravioleta del sol, el consumo de alcohol, el tabaco, la contaminación y la exposición a sustancias químicas, y aunque suele reparase, esto no siempre funciona.

Una de las formas en que el ADN se deteriora es cuando se ‘entrecruza’ (sus dos cadenas quedan pegadas una a la otra), lo que impide que pueda replicarse y expresar genes con normalidad, explica un comunicado del Laboratorio de Ciencias Médicas, que recuerda que la acumulación de daños puede provocar cáncer.

Para este estudio, los investigadores, liderados por David Rueda y Lori Passmore, se centraron en una vía de reparación del ADN conocida como la vía de la anemia de Fanconi, que se identificó hace más de veinte años.

Esta está activa durante toda la vida e identifica los daños y los repara continuamente (las personas con mutaciones que reducen la eficacia de esta vía son mucho más propensas a padecer cáncer).

Aunque las proteínas implicadas en esta vía se descubrieron hace tiempo, seguía siendo «un misterio» cómo identificaban el ADN entrecruzado e iniciaban el proceso de reparación.

El equipo de Lori Passmore en Cambridge había constatado previamente -el trabajo se publicó en 2020- que el complejo proteico llamado FANCD2-FANCI (D2-I), que actúa en uno de los primeros pasos de la vía de la anemia de Fanconi, se adhiere al ADN, iniciando así su reparación.

Sin embargo, quedaba por resolver cómo este complejo reconoce el ADN entrecruzado y por qué está implicado en otros tipos de daño.

Para avanzar en este conocimiento, los investigadores utilizaron una combinación de técnicas de vanguardia para demostrar que el complejo D2-I se desliza a lo largo del ADN, controlando su integridad, y para visualizar cómo reconoce dónde detenerse, permitiendo que las proteínas se muevan y se bloqueen en ese punto para iniciar su restauración.

En concreto, utilizaron una técnica de microscopía de última generación conocida como ‘pinzas ópticas correlacionadas e imagen de fluorescencia’ para explorar cómo ese complejo proteico se desliza a lo largo de una molécula de ADN de doble hélice.

Además, usaron la criomicroscopía electrónica, una potente técnica para visualizar proteínas a nivel molecular y con la que determinaron las estructuras del complejo D2-I.

«Comprender el proceso de reparación del ADN y, lo que es más importante, por qué falla reviste una enorme importancia, ya que el daño en el mismo es un factor clave en muchas enfermedades», resumen los autores, entre ellos el español Pablo Alcón.

Muchos fármacos contra el cáncer provocan un daño celular tan grave que las células cancerosas dejan de dividirse y mueren. En tales casos, las vías de reparación del ADN, un proceso fisiológico tan vital en la vida normal, pueden ser secuestradas por las células cancerosas, que las utilizan para resistir los efectos de los fármacos quimioterapéuticos.

Entender las bases mecánicas del primer paso en la vía de reparación del ADN puede ayudar a que los fármacos contra el cáncer sean más eficaces en el futuro.

31 julio 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 2, 2024 | Carlos Alberto Santamaría González | Filed under: Bioingeniería, Biología, Bioquímica, Biotecnología, Genética clínica, Medicina familiar y comunitaria, Medicina regenerativa | Etiquetas: , , |

  • Noticias por fecha

    abril 2025
    L M X J V S D
    « mar    
     123456
    78910111213
    14151617181920
    21222324252627
    282930  
  • Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave