armas nuclearEl 1 de agosto de 2023, más de 100 revistas médicas publicaron simultáneamente un editorial, coescrito por 16 editores de revistas, instando a los profesionales de la salud a alertar al público y a los líderes mundiales sobre los principales peligros para la salud y el medio ambiente que causaría una guerra nuclear. «El peligro», escribieron los editores, «ha sido subrayado por las crecientes tensiones entre muchos estados con armas nucleares». Read more

2e2843e2ade511d88df42c8a44a73c77_Generic

Investigadores del Instituto Nacional de Ciencia de Materiales (NIMS) y sus colegas japoneses han desarrollado una superficie con un revestimiento especial que responde a la luz y ayuda a comprobar cómo influye la dirección de la gravedad en los movimientos celulares. Los resultados, publicados en la revista Science and Technology of Advanced Materials, podrían ayudar a comprender mejor lo que les ocurre a las células de las personas postradas en cama durante periodos prolongados y el impacto de la dirección de la gravedad en la migración de las células cancerosas.

Las superficies especiales se fabrican recubriendo portaobjetos de vidrio con una combinación de moléculas sensibles a la luz. Al incidir la luz sobre una zona circular central del portaobjetos, las moléculas se rompen y se crea una zona libre de recubrimiento a la que pueden adherirse las células. Una vez estabilizadas en esta zona, los científicos utilizan la luz para despejar el área que rodea el círculo central. Esto anima a las células a moverse hacia fuera para llenar el cuadrado. El equipo investigó qué ocurre con el movimiento celular cuando el portaobjetos se coloca en posición vertical, con las células tumbadas encima y la dirección de la gravedad incidiendo sobre las células de arriba abajo. A continuación, realizaron una prueba similar con el portaobjetos volteado y apoyado a ambos lados, de modo que las células estuvieran invertidas y la dirección de la gravedad fuera desde la parte inferior de las células hacia su parte superior.

«Descubrimos que la dirección de la gravedad dificultaba la migración celular colectiva en la posición invertida al reducir el número de células líderes que se movían hacia el exterior en los bordes de las agrupaciones y al redistribuir los filamentos formadores de forma, compuestos de actina y miosina, de modo que mantenían las células agrupadas», explica la investigadora en biomateriales Shimaa Abdellatef, que realiza un postdoctorado en el NIMS.

Las superficies recubiertas que responden a la luz ofrecen una ventaja sobre los métodos actuales que estudian los efectos de la dirección de la gravedad, ya que requieren un contacto físico con la superficie a la que se adhieren las células. El nuevo método permite inducir a distancia la migración celular.

«Tenemos previsto aplicar nuestro método para analizar las respuestas de las células cancerosas a la dirección de la gravedad», explica Jun Nakanishi, nanocientífico del NIMS que dirigió el estudio. «Esperamos encontrar diferencias entre las células sanas y las enfermas, lo que podría aportar información importante sobre la progresión del cáncer en pacientes encamados».

Mayo 16/2023 (Asia Research News) – Tomado de News Room Copyright 2004 – 2023 Asia Research News

 

El cartílago es el tejido que protege los huesos amortiguando los golpes y facilita el movimiento suave de las articulaciones. Debido a su limitada capacidad intrínseca de cicatrización, el trasplante de células madre es un enfoque terapéutico prometedor para tratar la inflamación y el daño del cartílago, así como para promover su regeneración. Sin embargo, una de las principales limitaciones de esta técnica es la rápida desaparición de las células madre trasplantadas de la superficie lisa del cartílago y del entorno fluido que lo rodea, lo que se traduce en resultados menos eficaces del tratamiento.

Un equipo conjunto de investigadores de POSTECH, el Centro Médico de la Universidad de Dongguk y Nature Gluetech (Corea) ha desarrollado una novedosa estrategia de tratamiento del cartílago dañado que consiste en utilizar un líquido viscoso inmiscible capaz de facilitar el trasplante de células madre al tejido afectado mediante una proteína adhesiva derivada del mejillón y ácido hialurónico. La investigación se ha publicado en la revista Chemical Engineering Journal, .

Los investigadores desarrollaron un novedoso material bioadhesivo en forma de fase líquida viscosa inmiscible para superar las limitaciones de la estrategia de tratamiento convencional. Para ello combinaron proteínas de adhesión derivadas de mejillones con ácido hialurónico de alto peso molecular, que presenta cargas opuestas y facilita así las interacciones electrostáticas entre ellas. Mediante la ingeniería de un bioadhesivo líquido altamente viscoso que no se desintegra ni se hincha en agua, el equipo formuló un material adhesivo capaz de encapsular con seguridad las células madre y facilitar su firme adhesión al lugar del trasplante.

Además, el equipo demostró que las células madre encapsuladas en el bioadhesivo líquido se retenían in situ cuando se trasplantaban en cartílago defectuoso en una evaluación de un modelo de conejo. La retención prolongada de las células madre trasplantadas dentro del cartílago dañado facilitó la regeneración del cartílago y potenció los efectos terapéuticos del trasplante de células madre. Otra ventaja del líquido adhesivo desarrollado por el equipo es que se trata de un adhesivo natural que no requiere ningún proceso físico o químico adicional.

El profesor Hyung Joon Cha, que dirigió la investigación, declaró: «Los efectos terapéuticos de las células madre pueden potenciarse notablemente utilizando la proteína de adhesión del mejillón, un biomaterial original desarrollado en Corea. Dado que el bioadhesivo líquido puede formularse para inyección, tiene potencial para ser un tratamiento eficaz del cartílago dañado cuando se utiliza en el trasplante de células madre a través de un artroscopio, similar a un endoscopio.»

La tecnología del material de la proteína de adhesión del mejillón se ha transferido a Nature Gluetech Co., Ltd. y se espera que pronto comience un estudio clínico del adhesivo de células madre denominado CartiFix, desarrollado para el tratamiento de la artritis en esta investigación.

Mayo 5/2023 (MedicalXpress) – Tomado de Arthritis & Rheumatism – Biomedical technology  Medical Xpress 2011 – 2023 powered by Science X Network

Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator

 

Los adultos jóvenes que superan un cáncer se enfrentan a retos únicos en su vida adulta. Entre ellos se incluyen impactos tanto psicológicos como físicos, como trastornos de la imagen corporal, dificultades en las relaciones sociales, problemas de fertilidad y sexuales, ansiedad, depresión y miedo a la reaparición del cáncer. El cáncer testicular es uno de los cánceres no cutáneos más frecuentes entre los hombres al final de la adolescencia y al principio de la edad adulta.

El doctor Michael Hoyt, profesor asociado de Salud de la Población y Prevención de Enfermedades, ha desarrollado una nueva terapia conductual que, según él y sus colaboradores, podría proporcionar el apoyo que tanto necesitan los jóvenes adultos supervivientes de cáncer testicular.

Su investigación se publica en la revista Annals of Behavioral Medicine.

En un ensayo aleatorizado y controlado, 75 adultos jóvenes supervivientes de cáncer testicular recibieron la Terapia de Regulación de Emociones Centrada en Objetivos (GET, por sus siglas en inglés) o la terapia de apoyo auditivo. La GET es una intervención de seis sesiones dirigida a mejorar la autorregulación mediante la mejora de las habilidades de navegación de objetivos, la mejora del sentido y el propósito, y la mejora de la capacidad para regular respuestas emocionales específicas. Las personas que recibieron la intervención GET presentaban menos síntomas depresivos y de ansiedad que las que recibieron terapia de apoyo auditivo, y estas mejoras continuaron 3 meses después.

«Nuestro objetivo final es ver prosperar a nuestros jóvenes adultos supervivientes de cáncer y si nuestra intervención puede reducir los resultados adversos, entonces es prometedora», dicen los autores.

Para más información: Hoyt, M., et al. (2023). Goal-Focused Emotion-Regulation Therapy (GET) in Young Adult Testicular Cancer Survivors: A Randomized Pilot Study, Annals of Behavioral Medicine. DOI: 10.1093/abm/kaad010. 

Mayo 01/2023 (MedicalXpress) – Tomado de Oncology & Cancer – Psychology & Psychiatry  Copyright Medical Xpress 2011 – 2023 powered by Science X Network.

Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator

 

A principios de la década de 1990, unos científicos que estudiaban el desarrollo de un gusano redondo identificaron una pequeña molécula de ARN que regulaba la expresión de genes específicos. Esto supuso el descubrimiento de los microARN (miARN), que ahora se sabe que están presentes en todas las formas de vida. Resulta que estas moléculas desempeñan papeles esenciales en muchos procesos biológicos.

Unos años más tarde, los investigadores se dieron cuenta de que las enfermedades podían desregular la expresión de los miARN, lo que puso de relieve su potencial como biomarcadores. De hecho, la expresión anormal de miARN es un rasgo distintivo de todas las enfermedades relacionadas con tumores. Así pues, las técnicas de detección de miARN pueden ser útiles para la detección precoz del cáncer.

Sin embargo, los miARN son pequeños y se degradan con facilidad, lo que dificulta su rápida detección y cuantificación. Para detectar miARN en una muestra, suele ser necesario primero «amplificarlos». En pocas palabras, esto significa replicar un miARN diana varias veces mediante procesos bioquímicos para que dicho miARN sea más fácil de detectar mediante métodos baratos. Desgraciadamente, la mayoría de las técnicas más avanzadas de amplificación de miARN pueden tardar más de cinco horas en completarse, lo que limita su uso en las pruebas en el punto de atención.

En este contexto, un equipo de investigadores, entre los que se encuentra el profesor asociado Chong Zhang, de la Universidad de Tsinghua (China), ha desarrollado recientemente una nueva metodología para la amplificación y detección rápidas de miARN. Como se explica en su último artículo, publicado el 27 de marzo de 2023 en BioDesign Research, el equipo combinó dos técnicas bioquímicas muy estudiadas en una sola de forma que se redujo considerablemente el tiempo total necesario.

La primera técnica que utilizaron se denomina amplificación en círculo rodante (RCA). En la RCA, la idea es diseñar una molécula de ADN circular o «sonda» a la que se une el fragmento de ARN diana. A continuación, una vez introducidas las enzimas ADN polimerasa y los bloques de ADN necesarios, el fragmento de ARN se amplía añadiendo nucleótidos complementarios a la sonda circular. Este proceso da lugar a una cadena larga y única de material genético que contiene múltiples copias de la sonda circular.

Aquí es donde entra en juego la segunda técnica, CRISPR-Cas12a. El CRISPR-Cas12a es una herramienta genética ampliamente utilizada en la que se diseña un complejo molecular para que se una a una secuencia de ADN específica. En este caso, los investigadores diseñaron el complejo para que se uniera a una región de la secuencia complementaria a la sonda circular. Es decir, los complejos CRISPR-Cas12a se unieron varias veces a lo largo de la cadena única de ADN producida mediante RCA. Una vez unidos estos complejos, la porción Cas12a se activó, separando una sonda fluorescente de su quencher. A su vez, esto creaba una señal fluorescente fácilmente detectable que era más brillante cuanto más se amplificaba el ARN diana inicial.

Además de la combinación de estas técnicas, los investigadores mejoraron el tiempo de reacción del paso RCA utilizando «sondas precircularizadas». Es decir, a diferencia de la mayoría de los procedimientos RCA estándar, las sondas adquirieron su forma circular antes de la reacción. Como señala el profesor Zhang, esto hizo que el proceso de detección fuera mucho más rápido sin comprometer el rendimiento del sistema: «La detección de miARN pudo completarse en sólo 70 minutos, en lugar de las cinco horas habituales, con un excelente límite de detección de 8,1 pM y una especificidad muy alta».

En conjunto, el método propuesto pinta un futuro brillante para la detección de miARN y su uso como biomarcadores. Satisfecho con los resultados, el Prof. Zhang concluye: «Nuestro diseño mejora la eficacia de las estrategias de detección basadas en CRISPR-Cas y RCA y muestra un gran potencial en la detección en laboratorio y en las pruebas en el punto de atención». Dado que las técnicas empleadas en esta metodología no son prohibitivamente caras ni complejas de realizar, la adopción generalizada del enfoque propuesto en entornos clínicos es factible.

Estos esfuerzos allanarán el camino hacia mejores herramientas de diagnóstico contra el cáncer y otras enfermedades que afectan a la expresión de miARN.

Abril 24/2023 (EurekaAlert!) – Tomado de News Release https://www.eurekalert.org/news-releases/987087 Copyright 2023 by the American Association for the Advancement of Science (AAAS). 

Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator

olfatoLas primeras imágenes moleculares del olfato abren la puerta a la creación de nuevos olores

Científicos de la Universidad de California en San Francisco (UCSF) han creado la primera imagen molecular en 3D de cómo una molécula de olor activa un receptor odorante humano, un paso crucial para descifrar el sentido del olfato.

Los hallazgos, que aparecen en la edición electrónica del 15 de marzo de 2023 de Nature, están a punto de reavivar el interés por la ciencia del olfato, con implicaciones para las fragancias, la ciencia de los alimentos y otros campos. Los receptores odoríferos -proteínas que se unen a las moléculas de olor en la superficie de las células olfativas- constituyen la mitad de la familia de receptores más grande y diversa de nuestro cuerpo; un conocimiento más profundo de ellos allana el camino hacia nuevos conocimientos sobre una serie de procesos biológicos.

«Este ha sido un gran objetivo en este campo durante algún tiempo», afirmó el Dr. Aashish Manglik, profesor asociado de química farmacéutica y autor principal del estudio. Según él, el sueño es cartografiar las interacciones de miles de moléculas aromáticas con cientos de receptores odorantes, de modo que un químico pueda diseñar una molécula y predecir a qué olerá.

«Pero no hemos podido hacer este mapa porque, sin una imagen, no sabemos cómo reaccionan las moléculas olorosas con sus correspondientes receptores de olores», afirma Manglik.

Una imagen pinta el aroma del queso

En el olfato intervienen unos 400 receptores únicos. Cada uno de los cientos de miles de olores que podemos detectar está formado por una mezcla de moléculas olorosas diferentes. Cada tipo de molécula puede ser detectado por un conjunto de receptores, creando un rompecabezas que el cerebro debe resolver cada vez que la nariz percibe algo nuevo.

«Es como pulsar las teclas de un piano para producir un acorde», explica el doctor Hiroaki Matsunami, catedrático de genética molecular y microbiología de la Universidad de Duke y estrecho colaborador de Manglik. El trabajo de Matsunami en las dos últimas décadas se ha centrado en descifrar el sentido del olfato. «Ver cómo un receptor odorante se une a un odorante explica cómo funciona esto a un nivel fundamental».

Para crear esa imagen, el laboratorio de Manglik utilizó un tipo de imagen llamado criomicroscopía electrónica (crioEM), que permite a los investigadores ver la estructura atómica y estudiar las formas moleculares de las proteínas. Pero antes de que el equipo de Manglik pudiera visualizar el receptor odorante uniéndose a una molécula de olor, necesitaban purificar una cantidad suficiente de la proteína receptora.

Los receptores odorantes son muy difíciles de fabricar en el laboratorio para estos fines, y algunos dicen que imposibles.

Los equipos de Manglik y Matsunami buscaron un receptor odorante que abundara tanto en el cuerpo como en la nariz, pensando que sería más fácil de fabricar artificialmente, y que además pudiera detectar olores solubles en agua. Se decidieron por un receptor llamado OR51E2, conocido por su respuesta al propionato, una molécula que contribuye al penetrante olor del queso suizo.

Pero incluso OR51E2 resultó difícil de fabricar en el laboratorio. Los experimentos típicos de crio-EM requieren un miligramo de proteína para producir imágenes a nivel atómico, pero el coautor Christian Billesbøelle, PhD, científico principal del laboratorio Manglik, desarrolló métodos para utilizar sólo una centésima parte de un miligramo de OR51E2, poniendo la instantánea del receptor y el odorante al alcance de la mano.

«Lo conseguimos superando varios impasses técnicos que han asfixiado el campo durante mucho tiempo», afirma Billesbøelle. «Hacerlo nos permitió captar la primera imagen de un odorante que conecta con un receptor odorante humano en el mismo momento en que se detecta un olor».

Esta instantánea molecular demostró que el propionato se adhiere fuertemente al OR51E2 gracias a un ajuste muy específico entre odorante y receptor. El hallazgo coincide con una de las funciones del sistema olfativo como centinela del peligro.

Aunque el propionato contribuye al rico aroma a nuez del queso suizo, por sí solo su olor es mucho menos apetitoso.

«Este receptor se concentra en detectar el propionato y puede haber evolucionado para ayudar a detectar si la comida se ha echado a perder», explica Manglik. En cambio, los receptores de olores agradables como el mentol o la alcaravea podrían interactuar de forma más flexible con los odorantes, especuló.

Con solo soplar

Además de emplear un gran número de receptores a la vez, otra cualidad interesante del sentido del olfato es nuestra capacidad para detectar pequeñas cantidades de olores que pueden ir y venir. Para investigar cómo el propionato activa este receptor, la colaboración recurrió al biólogo cuantitativo Nagarajan Vaidehi, PhD, de City of Hope, que utilizó métodos basados en la física para simular y filmar cómo el propionato activa el OR51E2.

«Realizamos simulaciones por ordenador para comprender cómo el propionato provoca un cambio de forma en el receptor a nivel atómico», explica Vaidehi. «Estos cambios de forma desempeñan un papel fundamental en el modo en que el receptor odorante inicia el proceso de señalización celular que conduce a nuestro sentido del olfato».

El equipo está desarrollando ahora técnicas más eficaces para estudiar otros pares de receptores odorantes y comprender la biología no olfativa asociada a los receptores, que se han relacionado con el cáncer de próstata y la liberación de serotonina en el intestino.

Manglik imagina un futuro en el que puedan diseñarse nuevos olores a partir de la comprensión de cómo la forma de una sustancia química conduce a una experiencia perceptiva, de forma parecida a cómo los químicos farmacéuticos diseñan hoy fármacos a partir de las formas atómicas de las proteínas causantes de enfermedades.

«Llevábamos años soñando con resolver este problema», afirma. «Ahora tenemos nuestro primer punto de apoyo, el primer atisbo de cómo las moléculas del olfato se unen a nuestros receptores odorantes. Para nosotros, esto es sólo el principio».

 

Abril 17/2023 (Science Daily) – Tomado de Science News. Copyright 1995-2022 ScienceDaily. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator. 

  • Noticias por fecha

    octubre 2023
    L M X J V S D
    « sep    
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración