Imagen: Archivo.Investigadores de la Universidad de Rochester, Estados Unidos, descubrieron que el parpadeo desempeña un rol esencial en el procesamiento de la información visual, publica hoy las Actas de la Academia Nacional de Ciencias.

Los expertos destacaron que el acto ordinario de parpadear ocupa una sorprendente cantidad del tiempo de vigilia, pues los seres humanos, en promedio, pasan entre un tres y ocho por ciento de su tiempo despierto con los párpados cerrados.

Dado que los parpadeos impiden que se forme una imagen de la escena externa en la retina, es una peculiaridad de la evolución que pasemos tanto tiempo en este estado aparentemente vulnerable, especialmente considerando que los parpadeos ocurren con más frecuencia de lo necesario solo para mantener nuestros ojos bien lubricados.

«Al modular la entrada visual a la retina, los parpadeos reformatean efectivamente la información visual, produciendo señales de luminancia que difieren drásticamente de las que normalmente experimentamos cuando miramos un punto de la escena», explicó Michele Rucci, profesora del Departamento de Cerebro y Ciencias Cognitivas.

Rucci y sus colegas rastrearon los movimientos oculares de observadores humanos y combinaron estos datos con modelos informáticos y análisis espectral (analizando las diversas frecuencias de los estímulos visuales) para estudiar cómo el parpadeo afecta lo que ven los ojos en comparación con cuando los párpados están cerrados.

Los investigadores midieron qué tan sensibles son los humanos a la hora de percibir diferentes tipos de estímulos, como patrones en diferentes niveles de detalle.

Descubrieron que cuando las personas parpadean, notan mejor patrones grandes que cambian gradualmente, es decir, el parpadeo proporciona información al cerebro sobre el panorama general de una escena visual.

Los resultados muestran que cuando parpadeamos, el movimiento rápido del párpado altera los patrones de luz que son eficaces para estimular la retina.

Esto crea un tipo diferente de señal visual para nuestro cerebro en comparación con cuando nuestros ojos están abiertos y enfocados en un punto específico, recalcaron los expertos.

15 abril 2024|Fuente: Prensa Latina |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2023. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

abril 17, 2024 | Carlos Alberto Santamaría González | Filed under: Oftalmología | Etiquetas: , , |

ojo humanoLa pérdida de neuronas en la retina a causa de traumatismos o enfermedades provoca problemas de visión o ceguera, un proceso irreversible en los seres humanos mientras algunos animales, como los peces, tienen la capacidad de regenerar las neuronas de la retina convirtiendo en neuronas otro tipo de células llamadas «glía de Müller».

Esta conversión no se produce espontáneamente en humanos y otros mamíferos, pero una nueva investigación de la Universidad de Washington (EE.UU.), demuestra que la glía de Müller humana puede ser inducida a cambiar de identidad en el laboratorio, lo que podría servir como fuente potencial de nuevas neuronas para tratar la pérdida de visión. El estudio, publicado en Stem Cell Reports, demuestra que la glía humana puede reprogramarse para convertirse en células capaces de producir nuevas neuronas, abriendo una vía completamente nueva para reparar la retina en personas que han perdido neuronas por enfermedad o traumatismo.

Los investigadores modificaron genéticamente la glía de Müller humana en el laboratorio para activar programas genéticos específicos de las neuronas, como ocurre de forma natural en los peces. De hecho, al cabo de una semana, las células modificadas genéticamente adoptaron características similares a las de las neuronas retinianas inmaduras. Estos hallazgos sugieren que la glía de Müller humana puede convertirse en neuronas y puede servir como recurso para generar nuevas neuronas en las retinas de los pacientes en el futuro. Los investigadores señalan que en este estudio las glías de Müller se derivaron de glías de Müller inmaduras, por lo que queda por ver si métodos similares pueden transformar glías de Müller humanas adultas en neuronas, y con qué eficacia.

Wohlschlegel J, Finkbeiner C, Hoffer D, Rieke F, Golden SA, Reh T, et al.  ASCL1 induces neurogenesis in human Müller glia. Stem Cell Reports [Internet].2023[citado 17 dic 2023];18: 2400–2417. DOI:https://doi.org/10.1016/j.stemcr.2023.10.021

18 diciembre 2023 | Fuente: Neurología.com| Tomado de | Noticia

ceguera-1300x867Un estudio de la Universidad de Barcelona revela que la falta del gen CERKL, causante de enfermedades hereditarias de la visión, es capaz de alterar la capacidad de la retina para combatir el estrés oxidativo y causar ceguera.

Aún existen muchas incógnitas por resolver sobre el mecanismo de acción del gen CERKL, causante de la retinosis pigmentaria y otras enfermedades hereditarias de la visión. Ahora, un equipo de la Universidad de Barcelona ha descrito cómo la falta del gen CERKL altera la capacidad de las células de la retina para combatir el estrés oxidativo generado por la luz y desencadena mecanismos de muerte celular que causan ceguera. El nuevo trabajo, publicado en la revista Redox Biology, es un paso adelante para caracterizar la ceguera hereditaria e identificar mecanismos clave para abordar futuros tratamientos basados en la medicina de precisión.

Lidera el trabajo la catedrática Gemma Marfany, de la Facultad de Biología, el Instituto de Biomedicina de la Universidad de Barcelona (IBUB) y el Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER). La investigación, llevada a cabo con modelos animales, es el resultado de la estrecha colaboración con equipos del Instituto de Investigación Sant Joan de Déu (IRSJD), la Universidad de Valencia, el Centro de Biología Molecular Severo Ochoa (CSIC -UAM) y el Instituto de Investigación Sanitaria Hospital 12 de octubre de Madrid.

El estudio revela por primera vez que cuando falta el gen CERKL, las células de la retina están permanentemente estresadas. «Este estado exacerbado basal hace que cuando se causa un daño oxidativo adicional —como con el estímulo continuo de la luz— las células ya no sean capaces de responder porque no pueden activar más mecanismos de respuesta antioxidante», detalla Gemma Marfany, miembro del Departamento de Genética, Microbiología y Estadística de la UB.

«Por tanto, la retina está inflamada de forma permanente. Como consecuencia, las células retinianas activan mecanismos de muerte celular, como la necroptosis y la ferroptosis. Aunque los experimentos se han realizado en ratón, estas alteraciones permiten explicar cómo y por qué las células fotorreceptoras mueren en los pacientes y causan la ceguera», añade.

¿Cómo responde la retina a la luz cuando falta el gen CERKL?

La retina es un tejido neuronal que está constantemente sometida a un estrés lumínico —por tanto, oxidativo— y las células retinales deben activar mecanismos antioxidantes para hacerle frente. El nuevo trabajo se basa en un modelo de ratón transgénico al que se ha eliminado el gen CERKL mediante técnicas de edición génica (CRISPR). Aplicando técnicas electrofisiológicas, se comprobó cómo la retina de estos ratones sin CERKL degenera progresivamente de forma similar al caso de los pacientes humanos. Ahora bien, ¿cómo se altera la actividad fisiológica de los fotorreceptores cuando el gen CERKL está mutado?

«Gracias a la colaboración multidisciplinar entre equipos, hemos podido combinar distintas aproximaciones para profundizar en la patología causada por mutaciones en el CERKL. Las técnicas de transcriptómica han revelado cómo responde la retina al estrés lumínico cuando no tiene la proteína CERKL. Con los análisis metabolómicos se han identificado las vías bioquímicas celulares alteradas que no permiten a la retina hacer frente al daño oxidativo generado por el exceso de luz y que terminan provocando la muerte de los fotorreceptores», indica Gemma Marfany.

«Consideramos que el CERKL es un gen de resiliencia en el estrés oxidativo. Todo ese conocimiento complementa los estudios genéticos y abre nuevas vías a futuras aproximaciones terapéuticas», detalla la investigadora.

Descubrir la función de los genes para poder diseñar terapias

Una de cada 3 000 personas en el mundo tiene algún tipo de distrofia hereditaria de retina, una de las enfermedades raras de mayor incidencia en la población. Hasta ahora, se ha identificado un total de 90 genes asociados con la retinosis pigmentaria, pero existen más de 300 genes que pueden afectar a la visión.

«Es decisivo poder realizar un buen diagnóstico genético de los pacientes, e identificar el gen que causa la enfermedad. Ahora sabemos que cerca de un 3 % de los pacientes con retinosis pigmentaria en España traen mutaciones en el gen CERKL», apunta Marfany.

«Buena parte de los esfuerzos en investigación en enfermedades raras de la visión se centra precisamente en este diagnóstico genético de los pacientes, pero para comprender el efecto fisiológico de estas mutaciones es necesario analizar qué pasa en las células de la retina».

Identificar el gen causante de la enfermedad y su función fisiológica son los pilares para diseñar una terapia de precisión o personalizada. En el caso de la terapia génica, suele ser costosa —en tiempo y en dinero— y sólo es accesible a un número limitado de pacientes.

«Ahora bien, si conocemos mejor cuáles son las vías alteradas cuando no existe el gen CERKL, podremos pensar cómo compensar estas vías: por ejemplo, con medicamentos que puedan actuar sobre estas vías metabólicas y restaurar el correcto funcionamiento de las neuronas de la retina y devolver a un estado más homeostático. Este tipo de aproximación terapéutica es mucho más asequible, y si ralentiza el progreso de la enfermedad, podría beneficiar a muchos pacientes».

El Grupo de investigación en Genética Molecular Humana de la UB tiene una destacada trayectoria de más de 25 años en el estudio de las bases genéticas de las enfermedades de la visión. Fue el equipo líder en identificar un gen desconocido —el CERKL— como el causante de la retinosis pigmentaria (The American Journal of Human Genetics, 2004) en un estudio sobre una familia con varios hijos afectados.

«Nuestro equipo sigue trabajando para intentar comprender cómo mutaciones en el gen CERKL provoca la muerte de los fotorreceptores en los pacientes. En el futuro, queremos generar nuevos modelos de la enfermedad con organoides de la retina humana, y diseñar estrategias de terapia de precisión —terapia génica y también con medicamentos— basada en moléculas que permitan revertir los síntomas más graves de la enfermedad», concluye Gemma Marfany.

Referencia

García-Arroyo R, Domènech EB, Herrera-Úbeda C, Asensi MA, Núñez de Arenas C, Cuezva JM, et al. Exacerbated response to oxidative stress in the Retinitis Pigmentosa CerklKD/KO mouse model triggers retinal degeneration pathways upon acute light stress. Redox Biology. 2023; 66:102862. https://doi.org/10.1016/j.redox.2023.102862

https://www.sciencedirect.com/science/article/pii/S221323172300263X

18/09/2023

Fuente: (IMMedico) Tomado- Noticia/ Oftalmología

 

septiembre 20, 2023 | gleidishurtado | Filed under: Oftalmología | Etiquetas: , , , , , , , , , , |

Una investigación revela un prometedor enfoque basado en células madre para corregir la degeneración de las células fotorreceptoras, que subyace a varias formas de deterioro visual y ceguera.

Un estudio preclínico en el que se utilizaron células madre para producir células fotorreceptoras progenitoras -células que detectan la luz en el ojo- y trasplantarlas a modelos experimentales de retina dañada ha dado como resultado una recuperación significativa de la visión. Este hallazgo, realizado por científicos de la Facultad de Medicina Duke-NUS, el Instituto de Investigación Ocular de Singapur y el Instituto Karolinska de Suecia, supone un primer paso hacia la posible recuperación de la visión en enfermedades oculares caracterizadas por la pérdida de fotorreceptores.

«Nuestro laboratorio ha desarrollado un método novedoso que permite producir células progenitoras de fotorreceptores similares a las de los embriones humanos», explica el profesor Tay Hwee Goon, primer autor del estudio del Centro de Investigación de la Visión de la Duke-NUS. «El trasplante de estas células en modelos experimentales ha producido una restauración parcial de la función retiniana».

La degeneración de los fotorreceptores del ojo es una causa importante de disminución de la visión que puede acabar provocando ceguera y para la que actualmente no existe ningún tratamiento eficaz. La degeneración de los fotorreceptores se produce en diversas enfermedades hereditarias de la retina, como la retinosis pigmentaria -una rara enfermedad ocular que descompone las células de la retina con el tiempo y acaba provocando pérdida de visión- y la degeneración macular asociada a la edad, una de las principales causas de discapacidad visual en todo el mundo.

La profesora Tay y su equipo desarrollaron un procedimiento para cultivar células madre embrionarias humanas en presencia de proteínas lamininas purificadas que intervienen en el desarrollo normal de la retina humana. En presencia de lamininas, las células madre podían diferenciarse en células progenitoras fotorreceptoras encargadas de convertir la luz en señales que se envían al cerebro.

Cuando estas células se trasplantaron a retinas dañadas, los modelos preclínicos mostraron una recuperación significativa de la visión. Una prueba diagnóstica llamada electrorretinograma también identificó una recuperación significativa en las retinas a través de la actividad eléctrica de la retina en respuesta a un estímulo luminoso. Las células trasplantadas establecieron conexiones con las células retinianas circundantes y los nervios de la retina interna. Además, sobrevivieron y funcionaron durante muchas semanas tras el trasplante.

Cuando estas células se trasplantaron a retinas dañadas, los modelos preclínicos mostraron una recuperación significativa de la visión. Una prueba diagnóstica llamada electrorretinograma también identificó una recuperación significativa en las retinas a través de la actividad eléctrica de la retina en respuesta a un estímulo luminoso. Las células trasplantadas establecieron conexiones con las células retinianas circundantes y los nervios de la retina interna. Además, sobrevivieron y funcionaron durante muchas semanas tras el trasplante.

De cara al futuro, el equipo espera perfeccionar su método para hacerlo más sencillo y lograr resultados más consistentes que en intentos anteriores de explorar la terapia con células madre para la sustitución de células fotorreceptoras.

«Es emocionante encontrar estos resultados, que sugieren una vía prometedora hacia el uso de células madre para tratar las formas de deterioro visual y ceguera causadas por la pérdida de fotorreceptores», afirma el Dr. Helder Andre, Jefe de Investigación Molecular y Celular del Departamento de Neurociencia Clínica del Instituto Karolinska y autor principal del estudio.

El profesor asociado Enrico Petretto, director del Centro de Biología Computacional de Duke-NUS y responsable del análisis bioinformático del estudio, añadió: «Nuestro método también puede ser útil para comprender las vías moleculares y celulares que impulsan la progresión de la degeneración macular, lo que quizá conduzca al desarrollo de otros enfoques terapéuticos».

El próximo reto para los investigadores es explorar la eficacia de su método en modelos de degeneración de fotorreceptores que se asemejen más a la condición humana.

«Si obtenemos resultados prometedores en nuestros futuros estudios, esperamos pasar a ensayos clínicos con pacientes», afirma el profesor Karl Tryggvason, del Programa de Trastornos Cardiovasculares y Metabólicos de Duke-NUS y autor correspondiente del estudio. «Eso sería un paso importante para poder revertir el daño de la retina y restaurar la visión».

 

Abril 14/2023 (Asia Research News) – Tomado de NewsRoom. Copyright 2004 – 2023 Asia Research News. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator.

Investigadores de Estados Unidos han logrado integrar neuronas humanas cultivadas en laboratorio en cerebros de ratas adultas a las que se había lesionado su corteza visual. Solo tres meses después, el injerto estaba totalmente incorporado y los animales ya respondían a estímulos luminosos. Read more

febrero 8, 2023 | Dra. María Elena Reyes González | Filed under: Investigaciones, Medicina Regenerativa, Neurología, Oftalmología | Etiquetas: , , , , , |

Los niños entre 5 y 7 años en España padecen cada vez más miopía, ya son el 20 por ciento, según se ha puesto de manifiesto en la presentación de la campaña ‘#No Hay Salud Sin Salud Visual’, puesta en marcha por Hoya. Read more

septiembre 21, 2022 | Dra. María Elena Reyes González | Filed under: Epidemiología, Farmacología, Oftalmología, Oftalmopatías, Sociología | Etiquetas: , , , , , , |

  • Noticias por fecha

    noviembre 2024
    L M X J V S D
    « oct    
     123
    45678910
    11121314151617
    18192021222324
    252627282930  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración