Imagen: El diarioTreinta y dos científicos que lideran en varios países el estudio de la senescencia (proceso biológico ligado al envejecimiento) de las células han consensuado los biomarcadores mínimos para identificar la célula senescente in vivo.

Entre esos científicos está el investigador del Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) Juan Carlos Acosta, cuyo centro ha informado en nota de prensa de este acuerdo mundial, que se ha recogido en una guía que publica la revista científica Cell.

El acuerdo se fraguó en una reunión en Viena, centrada en generar una guía para la correcta identificación de esas células en numerosos procesos en donde tienen un papel importante, como es en el envejecimiento, o en diversas enfermedades asociadas (cáncer, fibrosis pulmonar, enfermedades cardiovasculares o neurodegenerativas, así como procesos infecciosos como la covid).

Juan Carlos Acosta asegura que la guía permitirá «poner un poco de coherencia y sentido a cómo identificar células senescentes en tejidos vivos» y así reunir toda la información que se tiene hasta ahora y todos los marcadores reconocidos «como consistentes» para estar en esa publicación.

«Desde los años 2000 se hicieron experimentos en ratón en los que se eliminaban selectivamente células senescentes, demostrándose que, con su eliminación, el ratón envejecía con mejor salud, o sea, con menos achaques asociados a envejecer. Eso es lo que ha hecho que la industria farmacéutica se haya interesado mucho por este fenómeno», ha asegurado Acosta.

Y ha añadido que se está intentando generar fármacos que eliminen de forma selectiva esas células (medicamentos senolíticos) y que, incluso, haya «una posibilidad de traslación terapéutica de todos estos conocimientos».

La célula senescente es la que ha sufrido un proceso de envejecimiento prematuro por un daño irreparable, lo que hace, según el investigador del IBBTEC, que se conviertan «en células peligrosas».

Asegura que «si el sistema inmunitario no es capaz de ver y eliminar células senescentes, estas producen daños en los tejidos en donde residen, causando enfermedades asociadas al envejecimiento».

08 agosto 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 12, 2024 | Carlos Alberto Santamaría González | Filed under: Biología, Bioquímica, Envejecimiento, Geriatría, Medicina Familiar y Comunitaria, Medicina Regenerativa | Etiquetas: , , |

Imagen: Archivo.Una investigación ha logrado resolver, gracias a técnicas de vanguardia, cómo el organismo es capaz de identificar los daños en el ADN causados por la luz solar, el alcohol y la contaminación para poder luego repararlos, un hallazgo que puede abrir la puerta a mejorar los tratamientos contra el cáncer.

El trabajo publicado en Nature descifra un «misterio de décadas», según sus responsables del Laboratorio de Ciencias Médicas de Londres y del Laboratorio de Biología Molecular de Cambridge, que han desvelado el mecanismo básico por el que uno de los sistemas de reparación del ADN más vitales reconoce los daños e inicia su restauración.

El ADN, el manual de instrucciones de todas las tareas que las células deben realizar, se daña constantemente a lo largo de la vida por factores ambientales como la luz ultravioleta del sol, el consumo de alcohol, el tabaco, la contaminación y la exposición a sustancias químicas, y aunque suele reparase, esto no siempre funciona.

Una de las formas en que el ADN se deteriora es cuando se ‘entrecruza’ (sus dos cadenas quedan pegadas una a la otra), lo que impide que pueda replicarse y expresar genes con normalidad, explica un comunicado del Laboratorio de Ciencias Médicas, que recuerda que la acumulación de daños puede provocar cáncer.

Para este estudio, los investigadores, liderados por David Rueda y Lori Passmore, se centraron en una vía de reparación del ADN conocida como la vía de la anemia de Fanconi, que se identificó hace más de veinte años.

Esta está activa durante toda la vida e identifica los daños y los repara continuamente (las personas con mutaciones que reducen la eficacia de esta vía son mucho más propensas a padecer cáncer).

Aunque las proteínas implicadas en esta vía se descubrieron hace tiempo, seguía siendo «un misterio» cómo identificaban el ADN entrecruzado e iniciaban el proceso de reparación.

El equipo de Lori Passmore en Cambridge había constatado previamente -el trabajo se publicó en 2020- que el complejo proteico llamado FANCD2-FANCI (D2-I), que actúa en uno de los primeros pasos de la vía de la anemia de Fanconi, se adhiere al ADN, iniciando así su reparación.

Sin embargo, quedaba por resolver cómo este complejo reconoce el ADN entrecruzado y por qué está implicado en otros tipos de daño.

Para avanzar en este conocimiento, los investigadores utilizaron una combinación de técnicas de vanguardia para demostrar que el complejo D2-I se desliza a lo largo del ADN, controlando su integridad, y para visualizar cómo reconoce dónde detenerse, permitiendo que las proteínas se muevan y se bloqueen en ese punto para iniciar su restauración.

En concreto, utilizaron una técnica de microscopía de última generación conocida como ‘pinzas ópticas correlacionadas e imagen de fluorescencia’ para explorar cómo ese complejo proteico se desliza a lo largo de una molécula de ADN de doble hélice.

Además, usaron la criomicroscopía electrónica, una potente técnica para visualizar proteínas a nivel molecular y con la que determinaron las estructuras del complejo D2-I.

«Comprender el proceso de reparación del ADN y, lo que es más importante, por qué falla reviste una enorme importancia, ya que el daño en el mismo es un factor clave en muchas enfermedades», resumen los autores, entre ellos el español Pablo Alcón.

Muchos fármacos contra el cáncer provocan un daño celular tan grave que las células cancerosas dejan de dividirse y mueren. En tales casos, las vías de reparación del ADN, un proceso fisiológico tan vital en la vida normal, pueden ser secuestradas por las células cancerosas, que las utilizan para resistir los efectos de los fármacos quimioterapéuticos.

Entender las bases mecánicas del primer paso en la vía de reparación del ADN puede ayudar a que los fármacos contra el cáncer sean más eficaces en el futuro.

31 julio 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

agosto 2, 2024 | Carlos Alberto Santamaría González | Filed under: Bioingeniería, Biología, Bioquímica, Biotecnología, Genética, Medicina Familiar y Comunitaria, Medicina Regenerativa | Etiquetas: , , |

Imagen: Archivo. Un grupo de pequeños animales de tamaño microscópico de agua dulce, los rotíferos bdeloideos, son capaces de protegerse de las infecciones con recetas antibióticas ‘robadas’ a las bacterias, según un estudio que publica la revista Nature Communications.

Detrás de la investigación hay un equipo de la Universidad de Oxford y la Universidad de Stirling, ambas en Reino Unido, y del Laboratorio Biológico Marino de Woods Hole, en Estados Unidos.

Estas diminutas criaturas tienen cabeza, boca, intestino, músculos y nervios como los demás animales, aunque son más pequeños que un cabello.

Según el nuevo trabajo, cuando estos rotíferos se exponen a una infección fúngica activan cientos de genes que han adquirido de bacterias y otros microbios. Algunos de estos genes producen en ellos armas de resistencia, como antibióticos y otros agentes antimicrobianos.

«Cuando tradujimos el código del ADN para ver qué hacían los genes robados, nos llevamos una sorpresa», explica Chris Wilson, de la Universidad de Oxford. «Los genes principales eran instrucciones para sustancias químicas que no pensábamos que los animales pudieran fabricar: parecían recetas para antibióticos».

Investigaciones anteriores ya habían constatado que los rotíferos han estado recogiendo ADN de su entorno durante millones de años, pero el nuevo estudio es el primero que los descubre utilizando estos genes contra enfermedades, según los autores, que añaden que no se conoce ningún otro animal que ‘robe’ genes de los microbios a tan gran escala.

Estos genes complejos -algunos de los cuales no se encuentran en ningún otro animal- fueron adquiridos de bacterias pero han sufrido una evolución en los rotíferos, explica por su parte David Mark Welch, del Laboratorio Biológico Marino.

Los antibióticos son esenciales para la asistencia sanitaria moderna, pero la mayoría de ellos no fueron inventados por científicos. Los producen de forma natural hongos y bacterias en la naturaleza, y los humanos pueden fabricar versiones artificiales para utilizarlas como medicina, detalla un comunicado del citado laboratorio.

La nueva investigación sugiere que los rotíferos podrían estar haciendo algo parecido. «Estos extraños animalitos han copiado el ADN que indica a los microbios cómo fabricar antibióticos», afirma Wilson.

El equipo los observó utilizando uno de estos genes contra una enfermedad causada por un hongo; los animales que sobrevivieron a la infección produjeron 10 veces más de ‘la receta química’ que los que murieron.

Los científicos creen que los rotíferos podrían dar pistas importantes en la búsqueda de fármacos para tratar infecciones humanas causadas por bacterias u hongos.

Enzimas inusuales

Los genes que los rotíferos adquirieron de las bacterias codifican una clase inusual de enzimas que ensamblan aminoácidos en pequeñas moléculas llamadas péptidos no ribosomales.

La siguiente fase de la investigación incluirá la identificación de múltiples de estos péptidos y el establecimiento de las condiciones en las que se puede inducir la síntesis de estos compuestos.

Uno de los problemas que plantea el desarrollo de nuevos fármacos es que muchos antibióticos fabricados por bacterias y hongos son venenosos o tienen efectos secundarios en los animales. Sólo unos pocos pueden convertirse en tratamientos que eliminen los microbios nocivos del cuerpo humano.

Si los rotíferos ya fabrican sustancias químicas similares en sus propias células, podrían abrir el camino a fármacos más seguros para otros animales, incluidas las personas, según los autores.

18 julio 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

julio 20, 2024 | Carlos Alberto Santamaría González | Filed under: Biología, Bioquímica, Farmacología, Genética | Etiquetas: , , , |

Imagen: Abraham Pineda / EFELos viajes al espacio, incluso de corta duración, son un desafío para la salud, con cambios a muchos niveles, aunque gran parte se normalizan al regreso, según una veintena de nuevos estudios que incluyen datos de la primera tripulación compuesta solo por astronautas no profesionales.

Un centenar de instituciones científicas participaron en los estudios que publican varias revistas del grupo Nature, cuyos resultados representan el mayor compendio de datos sobre medicina aeroespacial y biología espacial.

Viajar al espacio induce cambios moleculares, celulares y fisiológicos y plantea innumerables retos biomédicos al cuerpo humano, que serán cada vez más relevantes a medida que más personas se aventuran.

Los investigadores han usado datos de estancias de hasta un año en la Estación Espacial Internacional (EEI), pero la novedad es el análisis de los recopilados en Inspiration 4, la primera misión privada con una tripulación únicamente de astronautas civiles.

En 2021, dos mujeres y dos hombres pasaron tres días a 590 kilómetros de la Tierra (unos 200 por encima de la EEI), donde realizaron diversos experimentos y tomaron muestras de sangre, saliva, heces o biopsias de piel.

Esa misión de corta duración en órbita terrestre baja provocó cambios a múltiples niveles, algunos de los cuales reflejaban los de vuelos de mayor duración, aunque «no supuso un riesgo significativo para la salud de la tripulación», según una de las investigaciones.

Vuelta a la normalidad

La mayoría de los cambios en los telómeros (extremos de los cromosomas), la química de la sangre, las proteínas o en la expresión génica vuelven «a la normalidad en unos meses» tras el regreso, destacó en una rueda de prensa virtual Chirstopher Mason, de la Escuela de Medicina de Nueva York, firmante de varios artículos.

Manson dijo que esta vuelta a los niveles de base se dieron en una tripulación «que no son especialmente atletas olímpicos ni que se entrenan diez años para ir al espacio».

Aunque un 95 % de los marcadores vuelven a su valor de referencia en los meses posteriores al final de la misión, algunas proteínas, genes y citoquinas parecen activarse solo durante la recuperación y persisten al menos tres meses.

Esto sugiere que la readaptación a la Tierra activa una serie de mecanismos reparadores que ayudan a recuperar, al menos en parte, el estrés fisiológico impuesto por la exposición al entorno espacial.

El lanzamiento y la reentrada a la Tierra

Los cambios fisiológicos que más impactan de manera inicial al cuerpo se dan en el lanzamiento y la reentrada a la Tierra, debido a la variación de la gravedad, dijo a EFE el mexicano Emmanuel Urquieta, director médico del estadounidense Instituto de Investigación Traslacional para la Salud Espacial (TRISH).

El artículo en que colaboró Urquieta se centró en las primeras fases de adaptación al vuelo a nivel anatómico, celular, fisiológico y cognitivo, parámetro este último en el que «no hubo cambios significativos».

Los primeros son los cambios neurovestibulares, que tienen que ver con la orientación, provocando mareos y vómitos que afectan al 80 % de las personas, después -agregó- se producen los relacionados con la sangre y fluidos que se redistribuyen hacia el tórax, el cuello y la cabeza.

Urquieta señaló que la muestra del estudio es pequeña, cuatro personas, y que hacen falta más datos sobre los mismos parámetros en futuros vuelos.

El sistema inmunitario y la vejez

Otros estudios se centraron en los efectos de la falta de gravedad en el sistema inmunitario, combinando datos de simulaciones, de astronautas y ratones en la EEI. Los resultados apuntan a la reactivación de virus latentes o infecciones, incluso en vuelos de corta duración.

Las distintas células del sistema inmunitario en la sangre periférica se ven moldeadas por la microgravedad, en especial linfocitos y monocitos, que son los principales protagonistas de la inmunidad.

Este trabajo, firmado entre otros por el Instituto Buck de Investigación sobre el Envejecimiento (EE.UU.), investigó posibles compuestos para revertir los efectos de la microgravedad y apuntó a la quercitina como prometedora para mitigar esos daños.

Los cambios observados en el sistema inmunitario durante los viajes espaciales se semejan a los del envejecimiento en la Tierra, por lo que estos conocimientos pueden servir para diseñar intervenciones ante la disfunción inmune que acompaña a la vejez.

Los telómeros (relacionados con el envejecimiento celular) son objeto de otras investigaciones, pues aunque ya se había descrito que se alargan en el espacio, no se sabía cuándo se producía.

La investigadora de la Universidad Estatal de Colorado (EE.UU.) Susan Bailey indicó en la rueda de prensa que, con datos de Inspiration 4, comprobaron que los telómeros de todo ellos habían crecido en un viaje de solo tres días.

Bailey precisó que al regreso estos «se acortan drásticamente» y el resultado total es que «siguen siendo más cortos que cuando el astronauta comenzó el viaje».

Atención a los riñones

Entre los estudios, uno encabezado por el University College de Londres, advierte de que la estructura y función de los riñones se ve alterada por la radiación, tanto solar como galáctica (la del espacio profundo), hasta un punto que podría poner en riesgo una misión a Marte.

La investigación simuló con ratones la exposición a radiación galáctica similar a la que se sufriría en un viaje a Marte y el resultado fue daños permanentes y pérdida de función de los riñones.

Los marcos actuales de la medicina aeroespacial están por detrás de los avances de la de precisión en la Tierra, lo que subraya la necesidad de desarrollar rápidamente bases de datos, herramientas y protocolos de medicina espacial de cara a las próximas misiones lunares, marcianas y de exploración.

Los datos de estas investigaciones forman parte de un Atlas Médico y Ómico Espacial (SOMA), un repositorio integrado con datos de una amplia gama de misiones espaciales, así como de la base de datos EXPAND del TRISH.

12 junio 2024|Fuente: EFE |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2023. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia

junio 13, 2024 | Carlos Alberto Santamaría González | Filed under: Biología, Bioquímica, Fisiología, Inmunología, Medicina Interna | Etiquetas: , |

mocoUn nuevo estudio muestra que una mucosidad más espesa potencia la capacidad de las bacterias para autoorganizarse en enjambres para propagar infecciones

La viscoelasticidad mejora el movimiento colectivo de las bacterias

Las bacterias forman la microbiota humana y animal. Son las principales causas de muchas infecciones y constituyen una clase importante de materia activa. Las suspensiones bacterianas concentradas exhiben una locomoción y un enjambre de tipo turbulento a gran escala. Si bien el comportamiento colectivo de las bacterias en los fluidos newtonianos se comprende relativamente bien, muchas preguntas fundamentales siguen abiertas para los fluidos complejos.

Aquí, informamos sobre el movimiento bacteriano colectivo en un entorno viscoelástico biológico no newtoniano representativo ejemplificado por el moco. Los experimentos se realizan con moco gástrico porcino sintético, moco cervical natural de vaca y una solución de polímero similar a Newton.

Hemos descubierto que un aumento en la concentración de mucina y, correspondientemente, un aumento en la elasticidad de la suspensión aumenta de manera monótona la escala de longitud de la locomoción bacteriana colectiva. Por el contrario, esta longitud permanece prácticamente sin cambios en una solución de polímero newtoniano en un amplio rango de concentraciones.

Las observaciones experimentales están respaldadas por modelos computacionales. Nuestros resultados proporcionan información sobre cómo la viscoelasticidad afecta la organización espaciotemporal de la materia activa bacteriana. También amplían nuestra comprensión de la colonización bacteriana de las superficies mucosas y la aparición de resistencia a los antibióticos debido al enjambre.

Declaración de importancia

El moco, una sustancia viscoelástica parecida a un gel, es esencial para muchas funciones biológicas. El moco recubre las superficies de las células y los tejidos. Es permeable al oxígeno y a los nutrientes y protege contra patógenos como bacterias, hongos y virus. Comprender la motilidad bacteriana en fluidos similares al moco proporciona información sobre las infecciones nacidas de bacterias, incluidas las enfermedades gástricas y de transmisión sexual. Este trabajo demuestra que la viscoelasticidad del moco mejora la organización bacteriana, lo que lleva a la aparición de grupos bacterianos que se mueven coherentemente. Los resultados arrojan luz sobre cómo la viscoelasticidad controla la organización espaciotemporal de las comunidades bacterianas y proporcionan información sobre cómo controlar y prevenir la invasión bacteriana de las superficies mucosas.

Comentarios

Un nuevo estudio muestra que una mucosidad más espesa potencia la capacidad de las bacterias para autoorganizarse en enjambres para propagar infecciones

Los resfriados, los estornudos y los golpes de nariz que moquean son las características de la temporada de resfriados y gripe, y ese aumento del moco es exactamente lo que las bacterias usan para montar un ataque coordinado contra el sistema inmunológico, según un nuevo estudio de investigadores de Penn State. El equipo descubrió que cuanto más espesa es la mucosidad, mejor pueden proliferar las bacterias. Los hallazgos podrían tener implicaciones para los tratamientos que reducen la capacidad de propagación de las bacterias.

El estudio, publicado en la revista PNAS Nexus, demuestra cómo las bacterias utilizan el moco para mejorar su capacidad de autoorganizarse y posiblemente provocar infecciones. Los experimentos, realizados con moco sintético del estómago de cerdo, moco cervical natural de vaca y un compuesto polimérico soluble en agua llamado polividona, revelaron que las bacterias coordinan mejor el movimiento en el moco espeso que en sustancias acuosas.

Los hallazgos proporcionan información sobre cómo las bacterias colonizan el moco y las superficies mucosas, dijeron los investigadores. Los hallazgos también muestran cómo el moco mejora el movimiento colectivo bacteriano, o enjambre, lo que puede aumentar la resistencia a los antibióticos de las colonias bacterianas.

«Hasta donde sabemos, nuestro estudio es la primera demostración de bacterias nadando colectivamente en moco», dijo Igor Aronson, profesor de Ingeniería Biomédica, Química y Matemáticas de la Cátedra Huck en Penn State y autor correspondiente del artículo. «Hemos demostrado que el moco, a diferencia de los líquidos de consistencia similar, mejora el comportamiento colectivo».

El moco es esencial para muchas funciones biológicas, explicó Aronson. Recubre las superficies de células y tejidos y protege contra patógenos como bacterias, hongos y virus. Pero también es el material huésped de infecciones bacterianas, incluidas enfermedades gástricas y de transmisión sexual. Según Aronson, una mejor comprensión de cómo pululan las bacterias en la mucosidad podría allanar el camino para nuevas estrategias para combatir las infecciones y el creciente problema de la resistencia a los antibióticos.

«Nuestros hallazgos demuestran cómo la consistencia del moco afecta el movimiento aleatorio de bacterias individuales e influye en su transición al movimiento colectivo coordinado de grandes grupos bacterianos», dijo Aronson. «Hay estudios que demuestran que el movimiento colectivo o el enjambre de bacterias mejora la capacidad de las colonias bacterianas para defenderse del efecto de los antibióticos. La aparición del comportamiento colectivo estudiado en nuestro trabajo está directamente relacionado con el enjambre».

El moco es una sustancia notoriamente difícil de estudiar porque exhibe propiedades tanto líquidas como sólidas, explicó Aronson. Los líquidos generalmente se describen por su nivel de viscosidad, qué tan espeso o delgado es el líquido, y los sólidos se describen por su elasticidad, cuánta fuerza puede ser necesaria antes de romperse. El moco, un fluido viscoelástico, se comporta tanto como líquido como como sólido.

Para comprender mejor cómo se infecta el moco, el equipo utilizó técnicas de imágenes microscópicas para observar el movimiento colectivo de la bacteria concentrada Bacillus subtilis en el moco sintético del estómago de cerdo y en el moco cervical natural de la vaca. Compararon esos resultados con observaciones de Bacillus subtilis moviéndose en un polímero polividona soluble en agua en una amplia gama de concentraciones, desde niveles altos a bajos de polividona. Los investigadores también compararon sus resultados experimentales con un modelo computacional para el movimiento colectivo bacteriano en fluidos viscoelásticos como el moco.

El equipo descubrió que la consistencia del moco afecta profundamente el comportamiento colectivo de las bacterias. Los resultados indicaron que cuanto más espeso era el moco, más probabilidades había de que las bacterias exhibieran un movimiento colectivo, formando un enjambre coordinado.

«Pudimos demostrar cómo la viscoelasticidad del moco mejora la organización bacteriana, lo que a su vez conduce a grupos bacterianos que se mueven de manera coherente y causan infección», dijo Aronson. «Nuestros resultados revelan que los niveles de elasticidad y viscosidad del moco son un factor importante en la forma en que se organizan las comunidades bacterianas, lo que puede proporcionar información sobre cómo podemos controlar y prevenir la invasión bacteriana en el moco».

Aronson explicó que el equipo espera que el moco humano muestre propiedades físicas similares, lo que significa que sus hallazgos también son relevantes para la salud humana.

«El inicio del movimiento colectivo de las bacterias y su interacción con el moco debería ser el mismo que en el moco de vaca, cerdo o humano, ya que estas sustancias tienen propiedades mecánicas similares», dijo Aronson. «Nuestros resultados tienen implicaciones para la salud humana y animal. Estamos demostrando que la viscoelasticidad del moco puede mejorar el movimiento colectivo de bacterias a gran escala, lo que puede acelerar la rapidez con la que las bacterias penetran la barrera protectora del moco e infectan los tejidos internos».

Ver más información:  Liao W, Aranson IS. Viscoelasticity enhances collective motion of bacteria. PNAS Nexus[Internet].2023[citado 10 dic 2023]; 2(9): 291.  https://doi.org/10.1093/pnasnexus/pgad291

11 diciembre 2023 | Fuente: IntraMed | Tomado de |Noticias médicas

celulas humanas1Recientes investigaciones indican que los adultos humanos albergan aproximadamente entre 28 y 36 billones de células, las cuales siguen una distribución típica en términos de tamaño y masa.

Un equipo de científicos realizó un nuevo recuento de las células de cuerpo humano y su tamaño. El resultado fue que un hombre adulto está compuesto por unos 36 billones, una mujer adulta por unos 28 billones y un niño de 10 años por 17 billones.

Además del recuento total de células, el estudio reveló algo realmente interesante: se descubrió que estas células siguen un modelo matemático que se encuentra en otros aspectos de la naturaleza, basado en su tamaño y masa. Los últimos hallazgos demuestran que, cuando se agrupan células humanas con dimensiones similares, cada conjunto contribuye aproximadamente con una cantidad equivalente de masa al organismo.

El estudio que publica Proceedings of the National Academy of Sciences (PNAS) está coordinado por el Instituto Max Planck de Matemáticas (Alemania) y cuenta con la colaboración de la Institución Catalana de Investigación y Estudios Avanzados (ICREA).

Estimar masa, rango de tamaño y número de células

Los investigadores recopilaron datos de fuentes ya publicadas para estimar la masa celular, el rango de tamaño y el recuento de células de unos 1 200 grupos celulares: desde los glóbulos rojos más pequeños hasta las fibras musculares más grandes, a través de 60 tejidos.

Así vieron que hay una relación entre el tamaño y el número de células en el cuerpo y que, entre las células de un mismo tipo existen pequeñas variaciones, pero entre las sanguíneas más pequeñas y las musculares más grandes se dan variaciones de hasta siete órdenes de magnitud.

Para el estudio, consideraron el cuerpo de un varón representativo, de 70 kilos, lo que permite realizar otras estimaciones para una mujer (60 kilos) y un niño de 10 años (32 kilos), explicaron.

El estudio estima que, en total, un hombre adulto tiene unos 36 billones de células; una mujer unos 28 billones y un niño de diez años unos 17 billones.

Aunque los científicos ya habían calculado un número similar de células en varones adultos, hasta ahora no se había estudiado la relación entre el tamaño y el número de células en todo el cuerpo, según los autores.

«Nos sorprendió ver una relación inversa bastante regular entre el tamaño y el recuento de células en todo el cuerpo humano», declaró a Live Science Ian Hatton, autor principal del estudio, del Instituto Max Planck de Matemáticas en las Ciencias de Leipzig (Alemania).

Así, descubrieron que la variación de tamaño dentro de las clases de tamaño celular no dependía de si la célula era grande o pequeña. Esto sugiere, según resume la revista, que los mecanismos que mantienen el tamaño celular están activos en todo el organismo y en todas las clases de tamaño celular.

«Estos patrones sugieren la existencia de un equilibrio en todo el organismo entre el tamaño y el número de células, e implican la existencia de una homeostasis del tamaño celular en todos los tipos de células», escriben los investigadores en el artículo publicado.

«Nuestros datos sirven para establecer un marco cuantitativo holístico para las células del cuerpo humano, y ponen de relieve patrones a gran escala en la biología celular», concluyen.

Referencia

Hatton IA, Galbraith ED, Merleau NS, Shander JA. The human cell count and size distribution. Proceedings of the National Academy of Sciences. PNAS. 2023; 120 (39) e2303077120. https://doi.org/10.1073/pnas.23030771.

21/09/2023

Fuente: (DW.com)     Tomado de Ciencia| Global       

 

 

septiembre 23, 2023 | gleidishurtado | Filed under: Biología | Etiquetas: , , |

  • Noticias por fecha

    diciembre 2024
    L M X J V S D
    « nov    
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración