jul
6
Hace 100 años, el psiquiatra de la ciudad alemana de Jena, en el actual este del país, Hans Berger registró por primera vez la actividad eléctrica del cerebro humano, sentando las bases de los implantes cerebrales actuales. Su interés por el cerebro comenzó en 1893, cuando el mismo día en que tuvo un accidente a caballo, su hermana, que no estaba presente, dijo tener un mal presentimiento sobre su salud; esa «telepatía espontánea», como la describió luego, lo impulsó a estudiar psiquiatría para entender cómo funciona el cerebro.
Berger consiguió realizar un electroencefalograma (EEG) el 6 de julio de 1924. El procedimiento no solo revolucionó el conocimiento del cerebro, sino que permitió una amplia gama de aplicaciones clínicas, por ejemplo en el diagnóstico de la epilepsia y el TDAH (Trastorno de déficit de atención e hiperactividad).
Para el profano, un electroencefalograma tiene un aspecto un tanto extraño: se pegan a la cabeza muchas pequeñas placas metálicas, llamadas electrodos, y se conectan a un ordenador. Se supone que registran la actividad eléctrica del cerebro. En una pantalla aparecen curvas con determinados patrones, el electroencefalograma.
Por un lado, se puede influir activamente en los patrones, por ejemplo cerrando los ojos. Por otro, los expertos también pueden reconocer enfermedades como la epilepsia, en función del curso de las líneas. «Se necesita mucha pericia para distinguir el mal de cosas que solo lo parecen, pero no lo son», explica Jan Rémi, Jefe del Centro de Epilepsia del Hospital Universitario de Münich.
Para diagnosticar la epilepsia, por ejemplo, se puede realizar un electroencefalograma después de un ataque. Si las curvas muestran un patrón determinado, el paciente tiene epilepsia. Si el tratamiento farmacológico no funciona, un EEG también puede servir para determinar las regiones del cerebro en las que se origina la epilepsia y, llegado el caso, se pueden extirpar.
A futuro, chips cerebrales e inteligencia artificial
Rémi está convencido de que el ojo humano siempre seguirá siendo importante para el diagnóstico final. Pero en el futuro, la inteligencia artificial (IA) podría ser utilizada para prefiltrar líneas características, por ejemplo, que luego habría que comprobar.
Las señales de un electroencefalograma, con sus cientos y miles de ondas, ofrecen innumerables opciones de análisis que podrían analizarse mejor en el futuro con la ayuda de la IA. «Todavía estamos muy lejos de la lectura de la mente. Pero creo que en los próximos años podremos reconocer si alguien miente o no», afirma.
Para el investigador en el campo de la electroencefalografía Gyula Kovács, de la Universidad de Jena, la llegada de la IA es «el avance más importante de los últimos años en el análisis de datos de electroencefalogramas».
Esto permitió visualizar ciertas partes de la conciencia. «Eso antes no era posible en absoluto». Por ejemplo, es posible rastrear si alguien ha visto o no una serie, o si reconoce a una persona. También está la cuestión ética de hasta qué punto se aplica la técnica.
La tecnología de la empresa de implantes cerebrales Neuralink, del multimillonario estadounidense Elon Musk, también se basa en la electroencefalografía. El primer paciente recibió un implante cerebral de este tipo en enero, aunque Neuralink reconoció problemas.
En el pasado, también hubo estudios en Estados Unidos en los que las personas podían mover una mano protésica con la fuerza de sus pensamientos, afirma el neurocientífico Stefan Schweinberger, de la Universidad de Jena. Sin embargo, estos estudios eran muy complejos e invasivos. «Desde luego, no es un procedimiento que vaya a estar ampliamente disponible ni ahora ni en un futuro cercano».
Un inicio accidentado
Cuando Berger registró por primera vez la actividad eléctrica de un cerebro humano en su laboratorio de Jena el 6 de julio de 1924 -un domingo-, todo esto era aún un sueño de futuro. Casi 50 años antes ya se habían realizado grabaciones de este tipo en animales.
Considerado pedante y reacio a las críticas, Berger luchó durante mucho tiempo con sus hallazgos iniciales y no los hizo públicos hasta 1929. Un año antes, había anotado con resignación en su diario: «Llevo varios años trabajando en el supuesto encefalograma. ¿Y ahora qué? Abandonar el EEG».
A mediados de la década de 1930, sus hallazgos fueron reconocidos y tuvo notables partidarios, como el neurofisiólogo británico y Premio Nobel Edgar Douglas Adrian. Berger se dedicó a diversas aplicaciones de su descubrimiento, como los cambios del electroencefalograma en el sueño, los tumores cerebrales y la epilepsia.
Durante la época nacionalsocialista, Berger fue miembro de las SS y participó en esterilizaciones forzosas. Se suicidó en 1941, convencido de que tenía una enfermedad incurable y deprimido por lo que estaba viendo en Europa.
La clínica de neurología de Jena que lleva su nombre pasó a llamarse Clínica Hans Berger en 2022.
Además del diagnóstico, el EEG también se utiliza, por ejemplo, para detectar la profundidad de la anestesia, explica Rémi. «Esto nos ayuda a ahorrar en anestesia». También se puede evaluar la gravedad del daño cerebral, incluida la determinación de la muerte cerebral. El EEG también se utiliza para diferenciar las fases del sueño.
El electroencefalograma abre además un amplio campo de investigación, que también se está llevando a cabo en su antiguo lugar de trabajo en Jena. Los investigadores quieren utilizar el EEG para averiguar si los pacientes con autismo pueden suprimir determinadas actividades cerebrales mediante la llamada neurorretroalimentación.
Los pacientes pueden ver su actividad cerebral en una pantalla, por así decirlo, y entrenarse para cambiarla a voluntad. En concreto, se trata de una actividad cerebral específica que suele regularse a la baja en determinadas situaciones, pero no en los autistas.
Se colocan electrodos en el cuero cabelludo de los pacientes y se les muestra una película que solo sigue funcionando sin interferencias si esta actividad cerebral se mantiene por debajo de un determinado umbral.
La tecnología se utiliza desde hace algún tiempo en el tratamiento de pacientes con TDAH, y también se han realizado ensayos iniciales con pacientes de ictus, acúfenos en el oído y covid de larga duración.
04 julio 2024|Fuente: DPA |Tomado de la Selección Temática sobre Medicina de Prensa Latina. Copyright 2024. Agencia Informativa Latinoamericana Prensa Latina S.A.|Noticia
oct
23
Unos auriculares pueden convertirse en una herramienta para registrar la actividad eléctrica del cerebro y los niveles de lactato en el organismo gracias a dos sensores flexibles serigrafiados en una superficie flexible similar a un sello, según publica un grupo de investigadores de la Universidad de California en San Diego (EE.UU.) en un artículo de Nature Biomedical Engineering. Estos sensores pueden comunicarse con los auriculares, que a su vez transmiten de forma inalámbrica los datos recogidos para su visualización y posterior análisis, ya sea en un teléfono inteligente o en un ordenador portátil. Los datos pueden utilizarse para vigilar la salud a largo plazo y detectar enfermedades neurodegenerativas.
Los datos de un electroencefalograma (EEG), que mide la actividad eléctrica del cerebro, y del lactato del sudor, pueden combinarse para diversos fines. Por ejemplo, pueden utilizarse para diagnosticar distintos tipos de crisis, incluidas las epilépticas. También pueden utilizarse para controlar el esfuerzo durante el ejercicio físico y controlar los niveles de estrés y concentración. Los investigadores prevén un futuro en el que los sistemas de neuroimagen y control de la salud funcionen con sensores portátiles y dispositivos móviles, como teléfonos, auriculares, relojes, etc., para realizar un seguimiento de la actividad cerebral y los niveles de muchos metabolitos relacionados con la salud a lo largo del día. Esto permitiría a los usuarios mejorar las capacidades cerebrales y corporales. El equipo también prevé un futuro en el que las capacidades de los dispositivos de audio portátiles existentes, como los auriculares, puedan ampliarse considerablemente para recoger una gama mucho más amplia de datos.
Los investigadores prevén que este trabajo dé lugar a nuevas terapias. «El acoplamiento de las señales cerebrales medidas con el sonido reproducido por el dispositivo en el oído puede permitir nuevos avances terapéuticos de gran alcance para la corrección activa de trastornos neurológicos debilitantes, como el tinnitus, para el que actualmente no existe ningún tratamiento eficaz
Referencia
Xu Y, Paz E De La , Paul A, Mahato K, Sempionatto JR, Tostado N, et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng[Internet].2023[citado 21 0ct 2023];1307–1320. https://doi.org/10.1038/s41551-023-01095-1
23 octubre 2023| Fuente: Neurología| Tomado de Noticia
jul
26
Un estudio liderado por científicos del Consejo Superior de Investigaciones Científicas (CSIC) ha descubierto que muchas de las actividades habitualmente atribuidas a la corteza cerebral en realidad se generan en otras estructuras del cerebro. Los resultados del trabajo, publicado en la revista Cerebral Cortex, podrían ayudar a mejorar la lectura del encefalograma y a corregir posibles interpretaciones erróneas de estudios anteriores. Read more
dic
18
Un equipo internacional de científicos ha desarrollado un método para evaluar la inteligencia y la personalidad a partir de datos neurofisiológicos del cerebro humano. Read more
may
1
Un estudio confirma el valor de la resonancia magnética y el electroencefalograma como herramientas para el diagnóstico diferencial de pacientes con epilepsia. Según los expertos, un conocimiento más profundo de la etiología de este síndrome puede facilitar el diagnóstico, el pronóstico y también ser de gran utilidad para guiar la terapia en estos pacientes. Read more
nov
13
Una técnica innovadora permitirá mantener la comunicación con pacientes que tienen conciencia no manifiesta, difundió la revista The Lancet (doi:10.1016/S0140-6736(11)61224-5) en su más reciente edición. Read more