abr
25
Científicos han propuesto una teoría sobre cómo las células cancerosas podrían adaptarse activamente al sistema inmunitario para hacerse resistentes a la inmunoterapia, según informa un estudio publicado hoy (25 de abril) en eLife.
Su teoría sugiere que, a medida que una población de células cancerosas evoluciona y se adapta en respuesta a ser reconocida y destruida por el sistema inmunitario, el reconocimiento inmunitario y las condiciones ambientales determinan la dificultad con la que una futura enfermedad puede ser atacada con un tratamiento diferente.
Los tratamientos que utilizan el propio sistema inmunitario del organismo contra el cáncer (inmunoterapias) prometen una remisión más duradera de la enfermedad. Al atacar las «banderas» moleculares de la superficie de las células tumorales, denominadas antígenos asociados a tumores (AAT), es posible alertar al sistema inmunitario del organismo de su presencia, potencialmente durante muchos años.
Por desgracia, al igual que los tumores encuentran mecanismos compensatorios para adaptarse a la quimioterapia, las células cancerosas también pueden encontrar formas de eludir el reconocimiento del sistema inmunitario. Pero mientras que la resistencia a los fármacos puede ser problemática para las terapias convencionales, cuando las células cancerosas se adaptan para evitar el reconocimiento inmunitario, pierden y ganan TAA, y estos nuevos antígenos podrían ser el objetivo de nuevas inmunoterapias.
«Hasta ahora se suponía que las células cancerosas se adaptaban a ser reconocidas por el sistema inmunitario de forma pasiva, en lugar de percibir el entorno inmunitario circundante y adaptarse activamente», explica Jason George, coautor del estudio y profesor adjunto del Departamento de Ingeniería Biomédica de la Universidad A&M de Texas (EE.UU.).
«Sin embargo, experimentos anteriores han demostrado que el nivel de evasión del cáncer puede ser ajustado con precisión por las células malignas que detectan las tensiones ambientales e inmunológicas. En respuesta al estrés, las células cancerosas pueden adaptarse adquiriendo mutaciones y alterando el nivel de proteínas que de otro modo serían raras, por ejemplo, para sobrevivir. Esto puede dar lugar a cambios en las firmas de antígenos presentes en las células cancerosas que el sistema inmunitario es capaz de reconocer, y el seguimiento de estas modificaciones podría revelar nuevas vulnerabilidades que pueden ser objeto de tratamiento terapéutico».
Bajo la vigilancia del sistema inmunitario humano, las células cancerosas se eliminan, escapan al sistema inmunitario o alcanzan un equilibrio en el que el cáncer coexiste con el sistema inmunitario durante un largo periodo de tiempo. Todos estos resultados dependen de una compleja interacción entre el reconocimiento inmunitario y la evolución del cáncer, y se desconocen en gran medida los efectos resultantes de una estrategia de evasión adaptativa del cáncer sobre la posterior progresión de la enfermedad.
Para abordar esta cuestión, el equipo desarrolló un modelo matemático para cuantificar la agresividad de la estrategia evolutiva de una población de células cancerosas cuando se enfrentan a diferentes entornos inmunitarios.
Como predijeron los autores, las poblaciones de células cancerosas que adoptaban una estrategia de evasión activa superaban a sus homólogas pasivas, lo que aumentaba drásticamente la frecuencia con la que las poblaciones cancerosas acababan escapando del sistema inmunitario. Sin embargo, aunque estas poblaciones evadieron la inmunidad, pagaron una penalización en forma de un mayor número de mutaciones y/o alteraciones transcripcionales, que afectan al perfil TAA general de la población celular.
El modelo también predijo que las células cancerosas en un entorno inmunitario favorable al tumor se volverían inestables porque ganan y pierden AAT, lo que podría explicar por qué los tumores sólidos suelen tener puntos «calientes» y «fríos» que responden o no a la inmunoterapia, respectivamente.
El modelo, denominado Evasión tumoral mediante pérdida adaptativa de antígenos (TEAL), consiste en una población de células cancerosas que son atacadas a lo largo del tiempo por un sistema de reconocimiento, es decir, el sistema inmunitario. Si las células cancerosas utilizan una estrategia pasiva, la población cancerosa no cambia el ritmo al que intenta evadir el sistema inmunitario a lo largo del tiempo. Por el contrario, en una estrategia de evasión activa, la población cancerosa posee información clave -por ejemplo, el número de TAA que posee y el nivel al que las células inmunitarias atacan activamente a los TAA- y basa su estrategia en estos datos.
El equipo modeló y resolvió matemáticamente el comportamiento dinámico de ambas estrategias -las tácticas de evasión pasiva y activa- y las probó con diferentes entornos inmunitarios a lo largo del tiempo, desde un entorno inmunitario hostil con un gran número de células inmunitarias que reconocen todos los TAA hasta un entorno menos hostil con menos células que reconocen los TAA.
«Los cánceres que se adaptan activamente son, por diseño, más difíciles de tratar. Pero nuestro modelo predice que, en algunos casos, las poblaciones de cáncer pagan una penalización por sobrevivir hoy contra el reconocimiento inmunitario que podría ser objeto de tratamiento terapéutico mañana», afirma George. «Este trabajo inicial motiva una intrigante dirección de investigación para identificar estrategias terapéuticas óptimas contra enfermedades adaptativas o ‘inteligentes’ como el cáncer, y sin duda se beneficiarán de la modelización matemática».
El modelo proporciona información clave que, según los autores, será esencial para aprovechar el potencial de la inmunoterapia para mantener a raya los tumores de cada paciente durante muchos años.
«Derrotar a una población de cáncer altamente adaptable ha supuesto un reto persistente para investigadores y clínicos. El progreso será posible gracias a los descubrimientos fundamentales sobre el comportamiento del cáncer y a los conocimientos adicionales concomitantes sobre su evasión», afirma Herbert Levine, coautor del estudio y profesor adjunto de Bioingeniería en la Universidad Rice de Houston (EE.UU.) y catedrático distinguido de Física y Bioingeniería en la Universidad Northeastern de Boston (EE.UU.).
Abril 25/2023 (MedicalXpress) – Tomado de Oncology & Cancer Immunology Copyright Medical Xpress 2011 – 2023 powered by Science X Network
Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator