Investigadores del Instituto Catalán de Nanociencia y Nanotecnología han respondido a una de las grandes cuestiones sin resolver del proceso de autoreparación de los huesos: ¿cómo se activan las células responsables de formar nuevo tejido óseo? Sus resultados identifican un fenómeno electromecánico que se da en la nanoescala, la flexoelectricidad, como posible mecanismo que estimula y guía la respuesta celular durante el proceso de reparación de una fractura. El trabajo tiene implicaciones potenciales en el campo de las prótesis.

<p>A través del estudio de gradientes de tensión, tanto en huesos como en mineral óseo puro (hidroxiapatita), los investigadores han sido capaces de medir con precisión la magnitud  del campo eléctrico formado. / ICN2</p>

Un equipo delInstituto Catalán de Nanociencia y Nanotecnología (ICN2) ha descubierto que los huesos también son flexoeléctricos. Según proponen, la flexoelectricidad tendría un papel importante en la regeneración del tejido óseo tras las microfracturas que con gran frecuencia sufren los huesos.

El Grupo ICN2 de Nanofísica de Óxidos, liderado por Gustau Catalan, publica estos resultados en Advanced Materials, con Fabián Vásquez-Sancho como primer autor. El trabajo tiene implicaciones potenciales en el campo de las prótesis y en el desarrollo de materiales autoreparables biomiméticos.

El hecho de que los huesos generen electricidad bajo presión, estimulando así la autoreparación y el remodelado, era ya sabido. Tras describirse por primera vez en los años 50, se atribuyó inicialmente a la piezoelectricidad de uno de los componentes orgánicos de los huesos, el colágeno.

Sin embargo, estudios posteriores han observado marcadores de reparación ósea en ausencia de colágeno, sugiriendo que podría ser debida a otros efectos. En este trabajo los investigadores del ICN2 han revelado al verdadero responsable: la flexoelectricidad del componente mineral de los huesos.

La flexoelectricidad es una propiedad presente en algunos materiales mediante la cual emiten un pequeño voltaje cuando se les aplica una presión no homogénea. La respuesta es extremadamente localizada, haciéndose más débil a medida que nos alejamos del punto de máximo estrés. En microfracturas se concentra en la punta de la grieta, un punto anatómico pequeño que, por definición, concentra la máxima tensión que puede sostener un material antes de romperse. El resultado es un campo flexoeléctrico de tal magnitud que, en la zona próxima a la fractura, eclipsa cualquier posible efecto piezoeléctrico procedente del colágeno.

Magnitud  del campo eléctrico

Mediante el estudio de gradientes de tensión, tanto en huesos como en mineral óseo puro (hidroxiapatita), los investigadores han sido capaces de medir con precisión la magnitud  del campo eléctrico formado. Sus resultados indican que se trata de un efecto suficientemente grande como para que, a 50 micras de la punta de la grieta, pueda ser detectado por las células responsables de la reparación ósea. La flexoelectricidad queda así implicada de forma directa en el proceso.

Es sabido que las células responsables de sintetizar nuevo tejido óseo (osteoblastos) se adhieren cerca de la punta de la fractura. Por lo tanto, parece que la distribución del campo eléctrico señalaría este punto como el epicentro del daño a reparar, convirtiéndose en una baliza móvil que localiza la ubicación del extremo de la grieta a medida que ésta se va curando.

Este descubrimiento resulta prometedor para la industria de las prótesis. Mediante materiales que reproduzcan o amplifiquen el efecto flexoeléctrico sería posible guiar la reparación tisular de manera que se mejorara la integración de una prótesis.

El presente estudio ha sido financiado a través de un proyecto European Research Council (ERC), y se ha liderado desde el ICN2 con la colaboración del Centro de Investigación en Ciencia e Ingeniería de Materiales de la Universidad de Costa Rica (CICIMA, Costa Rica), el Laboratorio de Cálculo Numérico de la Universidad Politécnica de Cataluña (LaCàN, España), y la École Politechnique Federale de Lausanne (EPFL, Suiza).
enero 25/2018 (agenciasinc.es)

enero 26, 2018 | Lic. Heidy Ramírez Vázquez | Filed under: Bioingeniería, Medicina Regenerativa, Nanotecnología | Etiquetas: , , |

Comments

Comments are closed.

Name

Email

Web

Speak your mind

*
  • Noticias por fecha

    enero 2018
    L M X J V S D
    « dic   feb »
    1234567
    891011121314
    15161718192021
    22232425262728
    293031  
  • Noticias anteriores a 2010

    Noticias anteriores a enero de 2010

  • Suscripción AL Día

  • Categorias

    open all | close all
  • Palabras Clave

  • Administración